Loading…
Referenceless, grating-based, single shot X-ray phase contrast imaging with optimized laser-driven K-α sources
With its ability to efficiently probe low-Z materials, X-ray phase imaging methods have recently raised high interest in multiple fields from biology and medical applications to high energy density (HED) physics. Initially developed with synchrotron light and X-ray tubes, we present a novel grating...
Saved in:
Published in: | Optics express 2024-04 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With its ability to efficiently probe low-Z materials, X-ray phase imaging methods have recently raised high interest in multiple fields from biology and medical applications to high energy density (HED) physics. Initially developed with synchrotron light and X-ray tubes, we present a novel grating based Talbot X-ray deflectometer (TXD) diagnostic that was coupled with laser-generated K-α X-ray sources. The multi-terawatt laser (I > 1 × 10^14 W/cm^2) was used as a testbed for diagnostic development. It was found that X-ray source chromaticity plays an important role in TXD. Indeed, the broadband spectrum of laser-generated X-ray sources may strongly impact image quality and thus diagnostic performance. We qualified X-ray emission from different laser-produced sources and determined laser, target, and deflectometer parameters that optimize TXD performance. We present the first results of referenceless grating-based X-ray imaging at high-power laser facilities and discuss the implications of this new development in HED research. |
---|---|
ISSN: | 1094-4087 1094-4087 |