Loading…
Combining data and theory for derivable scientific discovery with AI-Descartes
Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms....
Saved in:
Published in: | Nature communications 2023-04, Vol.14 (1) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Nature communications |
container_volume | 14 |
creator | Cornelio, Cristina Dash, Sanjeeb Austel, Vernon Josephson, Tyler R. Goncalves, Joao Clarkson, Kenneth L. Megiddo, Nimrod El Khadir, Bachir Horesh, Lior |
description | Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2417695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417695</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24176953</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMoWLT_8HAv2DZaO0pVdHFyL2nyap_UBPJCxb-3g4OjdzlnONyJiLK1TJO0yPLpj89FzPxYj8vLdCdlJK6VezZkyd7BqKBAWQOhQ-ff0DoPBj0NqukRWBPaQC1pMMTaDTgmLwod7C_JAVkrH5CXYtaqnjH-ciFWp-OtOieOA9XjR0DdaWct6lBnMi225Sb_K_oA1tBAEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior</creator><creatorcontrib>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior ; Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><description>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Science & Technology - Other Topics</subject><ispartof>Nature communications, 2023-04, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000152846487 ; 0000000163500238 ; 0000000201000227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2417695$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornelio, Cristina</creatorcontrib><creatorcontrib>Dash, Sanjeeb</creatorcontrib><creatorcontrib>Austel, Vernon</creatorcontrib><creatorcontrib>Josephson, Tyler R.</creatorcontrib><creatorcontrib>Goncalves, Joao</creatorcontrib><creatorcontrib>Clarkson, Kenneth L.</creatorcontrib><creatorcontrib>Megiddo, Nimrod</creatorcontrib><creatorcontrib>El Khadir, Bachir</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><title>Nature communications</title><description>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</description><subject>Science & Technology - Other Topics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjLEKwjAURYMoWLT_8HAv2DZaO0pVdHFyL2nyap_UBPJCxb-3g4OjdzlnONyJiLK1TJO0yPLpj89FzPxYj8vLdCdlJK6VezZkyd7BqKBAWQOhQ-ff0DoPBj0NqukRWBPaQC1pMMTaDTgmLwod7C_JAVkrH5CXYtaqnjH-ciFWp-OtOieOA9XjR0DdaWct6lBnMi225Sb_K_oA1tBAEA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Cornelio, Cristina</creator><creator>Dash, Sanjeeb</creator><creator>Austel, Vernon</creator><creator>Josephson, Tyler R.</creator><creator>Goncalves, Joao</creator><creator>Clarkson, Kenneth L.</creator><creator>Megiddo, Nimrod</creator><creator>El Khadir, Bachir</creator><creator>Horesh, Lior</creator><general>Nature Publishing Group</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000152846487</orcidid><orcidid>https://orcid.org/0000000163500238</orcidid><orcidid>https://orcid.org/0000000201000227</orcidid></search><sort><creationdate>20230412</creationdate><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><author>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24176953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelio, Cristina</creatorcontrib><creatorcontrib>Dash, Sanjeeb</creatorcontrib><creatorcontrib>Austel, Vernon</creatorcontrib><creatorcontrib>Josephson, Tyler R.</creatorcontrib><creatorcontrib>Goncalves, Joao</creatorcontrib><creatorcontrib>Clarkson, Kenneth L.</creatorcontrib><creatorcontrib>Megiddo, Nimrod</creatorcontrib><creatorcontrib>El Khadir, Bachir</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelio, Cristina</au><au>Dash, Sanjeeb</au><au>Austel, Vernon</au><au>Josephson, Tyler R.</au><au>Goncalves, Joao</au><au>Clarkson, Kenneth L.</au><au>Megiddo, Nimrod</au><au>El Khadir, Bachir</au><au>Horesh, Lior</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining data and theory for derivable scientific discovery with AI-Descartes</atitle><jtitle>Nature communications</jtitle><date>2023-04-12</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000000152846487</orcidid><orcidid>https://orcid.org/0000000163500238</orcidid><orcidid>https://orcid.org/0000000201000227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-04, Vol.14 (1) |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_osti_scitechconnect_2417695 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | Science & Technology - Other Topics |
title | Combining data and theory for derivable scientific discovery with AI-Descartes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20data%20and%20theory%20for%20derivable%20scientific%20discovery%20with%20AI-Descartes&rft.jtitle=Nature%20communications&rft.au=Cornelio,%20Cristina&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2023-04-12&rft.volume=14&rft.issue=1&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/&rft_dat=%3Costi%3E2417695%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_24176953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |