Loading…

Combining data and theory for derivable scientific discovery with AI-Descartes

Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms....

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-04, Vol.14 (1)
Main Authors: Cornelio, Cristina, Dash, Sanjeeb, Austel, Vernon, Josephson, Tyler R., Goncalves, Joao, Clarkson, Kenneth L., Megiddo, Nimrod, El Khadir, Bachir, Horesh, Lior
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title Nature communications
container_volume 14
creator Cornelio, Cristina
Dash, Sanjeeb
Austel, Vernon
Josephson, Tyler R.
Goncalves, Joao
Clarkson, Kenneth L.
Megiddo, Nimrod
El Khadir, Bachir
Horesh, Lior
description Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2417695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417695</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24176953</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMoWLT_8HAv2DZaO0pVdHFyL2nyap_UBPJCxb-3g4OjdzlnONyJiLK1TJO0yPLpj89FzPxYj8vLdCdlJK6VezZkyd7BqKBAWQOhQ-ff0DoPBj0NqukRWBPaQC1pMMTaDTgmLwod7C_JAVkrH5CXYtaqnjH-ciFWp-OtOieOA9XjR0DdaWct6lBnMi225Sb_K_oA1tBAEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior</creator><creatorcontrib>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior ; Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><description>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Science &amp; Technology - Other Topics</subject><ispartof>Nature communications, 2023-04, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000152846487 ; 0000000163500238 ; 0000000201000227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2417695$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornelio, Cristina</creatorcontrib><creatorcontrib>Dash, Sanjeeb</creatorcontrib><creatorcontrib>Austel, Vernon</creatorcontrib><creatorcontrib>Josephson, Tyler R.</creatorcontrib><creatorcontrib>Goncalves, Joao</creatorcontrib><creatorcontrib>Clarkson, Kenneth L.</creatorcontrib><creatorcontrib>Megiddo, Nimrod</creatorcontrib><creatorcontrib>El Khadir, Bachir</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><title>Nature communications</title><description>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</description><subject>Science &amp; Technology - Other Topics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjLEKwjAURYMoWLT_8HAv2DZaO0pVdHFyL2nyap_UBPJCxb-3g4OjdzlnONyJiLK1TJO0yPLpj89FzPxYj8vLdCdlJK6VezZkyd7BqKBAWQOhQ-ff0DoPBj0NqukRWBPaQC1pMMTaDTgmLwod7C_JAVkrH5CXYtaqnjH-ciFWp-OtOieOA9XjR0DdaWct6lBnMi225Sb_K_oA1tBAEA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Cornelio, Cristina</creator><creator>Dash, Sanjeeb</creator><creator>Austel, Vernon</creator><creator>Josephson, Tyler R.</creator><creator>Goncalves, Joao</creator><creator>Clarkson, Kenneth L.</creator><creator>Megiddo, Nimrod</creator><creator>El Khadir, Bachir</creator><creator>Horesh, Lior</creator><general>Nature Publishing Group</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000152846487</orcidid><orcidid>https://orcid.org/0000000163500238</orcidid><orcidid>https://orcid.org/0000000201000227</orcidid></search><sort><creationdate>20230412</creationdate><title>Combining data and theory for derivable scientific discovery with AI-Descartes</title><author>Cornelio, Cristina ; Dash, Sanjeeb ; Austel, Vernon ; Josephson, Tyler R. ; Goncalves, Joao ; Clarkson, Kenneth L. ; Megiddo, Nimrod ; El Khadir, Bachir ; Horesh, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24176953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelio, Cristina</creatorcontrib><creatorcontrib>Dash, Sanjeeb</creatorcontrib><creatorcontrib>Austel, Vernon</creatorcontrib><creatorcontrib>Josephson, Tyler R.</creatorcontrib><creatorcontrib>Goncalves, Joao</creatorcontrib><creatorcontrib>Clarkson, Kenneth L.</creatorcontrib><creatorcontrib>Megiddo, Nimrod</creatorcontrib><creatorcontrib>El Khadir, Bachir</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelio, Cristina</au><au>Dash, Sanjeeb</au><au>Austel, Vernon</au><au>Josephson, Tyler R.</au><au>Goncalves, Joao</au><au>Clarkson, Kenneth L.</au><au>Megiddo, Nimrod</au><au>El Khadir, Bachir</au><au>Horesh, Lior</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining data and theory for derivable scientific discovery with AI-Descartes</atitle><jtitle>Nature communications</jtitle><date>2023-04-12</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Abstract Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000000152846487</orcidid><orcidid>https://orcid.org/0000000163500238</orcidid><orcidid>https://orcid.org/0000000201000227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-04, Vol.14 (1)
issn 2041-1723
2041-1723
language eng
recordid cdi_osti_scitechconnect_2417695
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects Science & Technology - Other Topics
title Combining data and theory for derivable scientific discovery with AI-Descartes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20data%20and%20theory%20for%20derivable%20scientific%20discovery%20with%20AI-Descartes&rft.jtitle=Nature%20communications&rft.au=Cornelio,%20Cristina&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2023-04-12&rft.volume=14&rft.issue=1&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/&rft_dat=%3Costi%3E2417695%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_24176953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true