Loading…
Modeling starch dynamics from seasonal variations of photosynthesis, growth, and respiration
Nonstructural carbohydrates (NSCs) buffer differences in plant carbon supply (photosynthesis) and demand (respiration, growth, etc.) but the regulation of their dynamics remains unresolved. Seasonal variations in NSCs are well-documented, but differences in the time-average, amplitude, phase, and ot...
Saved in:
Published in: | Tree physiology 2023-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonstructural carbohydrates (NSCs) buffer differences in plant carbon supply (photosynthesis) and demand (respiration, growth, etc.) but the regulation of their dynamics remains unresolved. Seasonal variations in NSCs are well-documented, but differences in the time-average, amplitude, phase, and other characteristics across ecosystems and functional types lack explanation; furthermore, observed dynamics do not always match expectations. The failure to match observed and expected dynamics has stimulated debate on whether carbon supply or demand drives NSC dynamics. To gain insight into how carbon supply and demand drive seasonal NSC dynamics, we derive a simple model of NSC dynamics based on carbon mass balance and linearizing the NSC demand to determine how supply-driven and demand-driven seasonal NSC dynamics differ. We find that supply-driven and demand-driven dynamics yield distinct timings of seasonal extrema, and supply overrides demand when carbon supply is low in winter (e.g., at high latitudes). Our results also suggest that NSC dynamics often lag changes carbon mass balance. We also predict differences in NSC dynamics across mass, suggesting saplings are more dynamics and respond faster to the environment than mature trees. Our findings suggest substrate-dependent regulation with environmental variation is sufficient to generate complex NSC dynamics. |
---|---|
ISSN: | 1758-4469 1758-4469 |
DOI: | 10.1093/treephys/tpad007 |