Loading…

Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator

Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of mo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-12, Vol.35 (11)
Main Authors: Chong, Su Kong, Zhang, Peng, Li, Jie, Zhou, Yinong, Wang, Jingyuan, Zhang, Huairuo, Davydov, Albert V., Eckberg, Christopher, Deng, Peng, Tai, Lixuan, Xia, Jing, Wu, Ruqian, Wang, Kang L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page
container_title Advanced materials (Weinheim)
container_volume 35
creator Chong, Su Kong
Zhang, Peng
Li, Jie
Zhou, Yinong
Wang, Jingyuan
Zhang, Huairuo
Davydov, Albert V.
Eckberg, Christopher
Deng, Peng
Tai, Lixuan
Xia, Jing
Wu, Ruqian
Wang, Kang L.
description Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2419148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419148</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24191483</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRbNQsD7-YXBfSG0tzVKkUheCYvdlCK2NpJnSSf7fB36Aq7s453BnIpIq3ccqz4qFWDI_pZQql3kk7qVttZ-MRgsXdGYMFr0hB9RBTSNZenzZtUduGYwDhFtA58MAB0cDWgoMFVoLZ8efmKa1mHdoud38diW2p7I-VjGxNw1r41vda3Lu_dzsskQlWZH-Jb0AXc0_kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Chong, Su Kong ; Zhang, Peng ; Li, Jie ; Zhou, Yinong ; Wang, Jingyuan ; Zhang, Huairuo ; Davydov, Albert V. ; Eckberg, Christopher ; Deng, Peng ; Tai, Lixuan ; Xia, Jing ; Wu, Ruqian ; Wang, Kang L.</creator><creatorcontrib>Chong, Su Kong ; Zhang, Peng ; Li, Jie ; Zhou, Yinong ; Wang, Jingyuan ; Zhang, Huairuo ; Davydov, Albert V. ; Eckberg, Christopher ; Deng, Peng ; Tai, Lixuan ; Xia, Jing ; Wu, Ruqian ; Wang, Kang L. ; Univ. of California, Irvine, CA (United States)</creatorcontrib><description>Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.</description><identifier>ISSN: 0935-9648</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Chemistry ; dualgating ; electric field ; Magnetic topological insulators ; MATERIALS SCIENCE ; Physics ; quantum anomalous Hall effect ; Science &amp; Technology - Other Topics ; topological phase transition</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.35 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000220169802 ; 0000000293631279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2419148$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Su Kong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Zhou, Yinong</creatorcontrib><creatorcontrib>Wang, Jingyuan</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Eckberg, Christopher</creatorcontrib><creatorcontrib>Deng, Peng</creatorcontrib><creatorcontrib>Tai, Lixuan</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><creatorcontrib>Univ. of California, Irvine, CA (United States)</creatorcontrib><title>Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator</title><title>Advanced materials (Weinheim)</title><description>Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.</description><subject>Chemistry</subject><subject>dualgating</subject><subject>electric field</subject><subject>Magnetic topological insulators</subject><subject>MATERIALS SCIENCE</subject><subject>Physics</subject><subject>quantum anomalous Hall effect</subject><subject>Science &amp; Technology - Other Topics</subject><subject>topological phase transition</subject><issn>0935-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjcsKwjAQRbNQsD7-YXBfSG0tzVKkUheCYvdlCK2NpJnSSf7fB36Aq7s453BnIpIq3ccqz4qFWDI_pZQql3kk7qVttZ-MRgsXdGYMFr0hB9RBTSNZenzZtUduGYwDhFtA58MAB0cDWgoMFVoLZ8efmKa1mHdoud38diW2p7I-VjGxNw1r41vda3Lu_dzsskQlWZH-Jb0AXc0_kg</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Chong, Su Kong</creator><creator>Zhang, Peng</creator><creator>Li, Jie</creator><creator>Zhou, Yinong</creator><creator>Wang, Jingyuan</creator><creator>Zhang, Huairuo</creator><creator>Davydov, Albert V.</creator><creator>Eckberg, Christopher</creator><creator>Deng, Peng</creator><creator>Tai, Lixuan</creator><creator>Xia, Jing</creator><creator>Wu, Ruqian</creator><creator>Wang, Kang L.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000220169802</orcidid><orcidid>https://orcid.org/0000000293631279</orcidid></search><sort><creationdate>20221220</creationdate><title>Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator</title><author>Chong, Su Kong ; Zhang, Peng ; Li, Jie ; Zhou, Yinong ; Wang, Jingyuan ; Zhang, Huairuo ; Davydov, Albert V. ; Eckberg, Christopher ; Deng, Peng ; Tai, Lixuan ; Xia, Jing ; Wu, Ruqian ; Wang, Kang L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24191483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>dualgating</topic><topic>electric field</topic><topic>Magnetic topological insulators</topic><topic>MATERIALS SCIENCE</topic><topic>Physics</topic><topic>quantum anomalous Hall effect</topic><topic>Science &amp; Technology - Other Topics</topic><topic>topological phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Su Kong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Zhou, Yinong</creatorcontrib><creatorcontrib>Wang, Jingyuan</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Eckberg, Christopher</creatorcontrib><creatorcontrib>Deng, Peng</creatorcontrib><creatorcontrib>Tai, Lixuan</creatorcontrib><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><creatorcontrib>Univ. of California, Irvine, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong, Su Kong</au><au>Zhang, Peng</au><au>Li, Jie</au><au>Zhou, Yinong</au><au>Wang, Jingyuan</au><au>Zhang, Huairuo</au><au>Davydov, Albert V.</au><au>Eckberg, Christopher</au><au>Deng, Peng</au><au>Tai, Lixuan</au><au>Xia, Jing</au><au>Wu, Ruqian</au><au>Wang, Kang L.</au><aucorp>Univ. of California, Irvine, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>35</volume><issue>11</issue><issn>0935-9648</issn><abstract>Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000220169802</orcidid><orcidid>https://orcid.org/0000000293631279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-12, Vol.35 (11)
issn 0935-9648
language eng
recordid cdi_osti_scitechconnect_2419148
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Chemistry
dualgating
electric field
Magnetic topological insulators
MATERIALS SCIENCE
Physics
quantum anomalous Hall effect
Science & Technology - Other Topics
topological phase transition
title Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Manipulation%20of%20Topological%20Phases%20in%20a%20Quantum%20Anomalous%20Hall%20Insulator&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chong,%20Su%20Kong&rft.aucorp=Univ.%20of%20California,%20Irvine,%20CA%20(United%20States)&rft.date=2022-12-20&rft.volume=35&rft.issue=11&rft.issn=0935-9648&rft_id=info:doi/&rft_dat=%3Costi%3E2419148%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_24191483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true