Loading…
Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology
Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved;...
Saved in:
Published in: | Journal of the American Chemical Society 2023-06, Vol.145 (22), p.12155-12163 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473 |
container_end_page | 12163 |
container_issue | 22 |
container_start_page | 12155 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Wang, Song Reddy, Vaishnavi Amarr Ang, Mervin Chun-Yi Cui, Jianqiao Khong, Duc Thinh Han, Yangyang Loh, Suh In Cheerlavancha, Raju Singh, Gajendra Pratap Rajani, Sarojam Strano, Michael S. |
description | Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology. |
doi_str_mv | 10.1021/jacs.3c01783 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2419267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820024996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EouVjY0YREwMpfnbiOCOEFpAqFQmYLffVKSlJXOwE1H9PohZYmJ78fHx9dQg5AzoCyuB6pdGPOFJIJN8jQ4gZDWNgYp8MKaUsTKTgA3Lk_ao7RkzCIRnwhHGaRmxIxs9FvSxNmLmNb3QZsLsgs5-6NHUTzNxS1wUGE6cr82Xduw9y64KnUneXt4VtDL7VtrTLzQk5yHXpzeluHpPXyfglewins_vH7GYaah5DE0qJXERADRoUIEU0R850NIccwAhGgVMEiUbHCaUiT2WeAi4kLrpNqqOEH5OLba71TaE8Fn0FtHVtsFEsgpSJHrrcQmtnP1rjG1UVHk3Z1Ta29YpJ1nmJ0lR06NUWRWe9dyZXa1dU2m0UUNXbVb1dtbPb4ee75HZemcUv_KPz7-v-1cq2ru5s_J_1DW_YgT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820024996</pqid></control><display><type>article</type><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S.</creator><creatorcontrib>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c01783</identifier><identifier>PMID: 37230942</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Abscisic Acid ; Biological Science Disciplines ; Biotechnology ; Chemistry ; Metal-Organic Frameworks ; Polymers</subject><ispartof>Journal of the American Chemical Society, 2023-06, Vol.145 (22), p.12155-12163</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</citedby><cites>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</cites><orcidid>0000-0001-8561-1385 ; 0000-0002-6524-9881 ; 0000-0002-4420-9637 ; 0009-0008-2918-7901 ; 0000-0002-1854-0406 ; 0000-0001-9869-4538 ; 0000-0003-2944-808X ; 0000-0001-7001-385X ; 0000000244209637 ; 000000032944808X ; 0000000185611385 ; 0000000198694538 ; 0000000265249881 ; 000000017001385X ; 0009000829187901 ; 0000000218540406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37230942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2419267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Reddy, Vaishnavi Amarr</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Cui, Jianqiao</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Han, Yangyang</creatorcontrib><creatorcontrib>Loh, Suh In</creatorcontrib><creatorcontrib>Cheerlavancha, Raju</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Rajani, Sarojam</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</description><subject>Abscisic Acid</subject><subject>Biological Science Disciplines</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Metal-Organic Frameworks</subject><subject>Polymers</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAURS0EouVjY0YREwMpfnbiOCOEFpAqFQmYLffVKSlJXOwE1H9PohZYmJ78fHx9dQg5AzoCyuB6pdGPOFJIJN8jQ4gZDWNgYp8MKaUsTKTgA3Lk_ao7RkzCIRnwhHGaRmxIxs9FvSxNmLmNb3QZsLsgs5-6NHUTzNxS1wUGE6cr82Xduw9y64KnUneXt4VtDL7VtrTLzQk5yHXpzeluHpPXyfglewins_vH7GYaah5DE0qJXERADRoUIEU0R850NIccwAhGgVMEiUbHCaUiT2WeAi4kLrpNqqOEH5OLba71TaE8Fn0FtHVtsFEsgpSJHrrcQmtnP1rjG1UVHk3Z1Ta29YpJ1nmJ0lR06NUWRWe9dyZXa1dU2m0UUNXbVb1dtbPb4ee75HZemcUv_KPz7-v-1cq2ru5s_J_1DW_YgT0</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Wang, Song</creator><creator>Reddy, Vaishnavi Amarr</creator><creator>Ang, Mervin Chun-Yi</creator><creator>Cui, Jianqiao</creator><creator>Khong, Duc Thinh</creator><creator>Han, Yangyang</creator><creator>Loh, Suh In</creator><creator>Cheerlavancha, Raju</creator><creator>Singh, Gajendra Pratap</creator><creator>Rajani, Sarojam</creator><creator>Strano, Michael S.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-6524-9881</orcidid><orcidid>https://orcid.org/0000-0002-4420-9637</orcidid><orcidid>https://orcid.org/0009-0008-2918-7901</orcidid><orcidid>https://orcid.org/0000-0002-1854-0406</orcidid><orcidid>https://orcid.org/0000-0001-9869-4538</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000-0001-7001-385X</orcidid><orcidid>https://orcid.org/0000000244209637</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/0000000198694538</orcidid><orcidid>https://orcid.org/0000000265249881</orcidid><orcidid>https://orcid.org/000000017001385X</orcidid><orcidid>https://orcid.org/0009000829187901</orcidid><orcidid>https://orcid.org/0000000218540406</orcidid></search><sort><creationdate>20230607</creationdate><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><author>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abscisic Acid</topic><topic>Biological Science Disciplines</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Metal-Organic Frameworks</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Reddy, Vaishnavi Amarr</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Cui, Jianqiao</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Han, Yangyang</creatorcontrib><creatorcontrib>Loh, Suh In</creatorcontrib><creatorcontrib>Cheerlavancha, Raju</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Rajani, Sarojam</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Song</au><au>Reddy, Vaishnavi Amarr</au><au>Ang, Mervin Chun-Yi</au><au>Cui, Jianqiao</au><au>Khong, Duc Thinh</au><au>Han, Yangyang</au><au>Loh, Suh In</au><au>Cheerlavancha, Raju</au><au>Singh, Gajendra Pratap</au><au>Rajani, Sarojam</au><au>Strano, Michael S.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>145</volume><issue>22</issue><spage>12155</spage><epage>12163</epage><pages>12155-12163</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37230942</pmid><doi>10.1021/jacs.3c01783</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-6524-9881</orcidid><orcidid>https://orcid.org/0000-0002-4420-9637</orcidid><orcidid>https://orcid.org/0009-0008-2918-7901</orcidid><orcidid>https://orcid.org/0000-0002-1854-0406</orcidid><orcidid>https://orcid.org/0000-0001-9869-4538</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000-0001-7001-385X</orcidid><orcidid>https://orcid.org/0000000244209637</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/0000000198694538</orcidid><orcidid>https://orcid.org/0000000265249881</orcidid><orcidid>https://orcid.org/000000017001385X</orcidid><orcidid>https://orcid.org/0009000829187901</orcidid><orcidid>https://orcid.org/0000000218540406</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-06, Vol.145 (22), p.12155-12163 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_2419267 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Abscisic Acid Biological Science Disciplines Biotechnology Chemistry Metal-Organic Frameworks Polymers |
title | Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Crystal%202D%20Covalent%20Organic%20Frameworks%20for%20Plant%20Biotechnology&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Song&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-06-07&rft.volume=145&rft.issue=22&rft.spage=12155&rft.epage=12163&rft.pages=12155-12163&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c01783&rft_dat=%3Cproquest_osti_%3E2820024996%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820024996&rft_id=info:pmid/37230942&rfr_iscdi=true |