Loading…

Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology

Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved;...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2023-06, Vol.145 (22), p.12155-12163
Main Authors: Wang, Song, Reddy, Vaishnavi Amarr, Ang, Mervin Chun-Yi, Cui, Jianqiao, Khong, Duc Thinh, Han, Yangyang, Loh, Suh In, Cheerlavancha, Raju, Singh, Gajendra Pratap, Rajani, Sarojam, Strano, Michael S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473
cites cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473
container_end_page 12163
container_issue 22
container_start_page 12155
container_title Journal of the American Chemical Society
container_volume 145
creator Wang, Song
Reddy, Vaishnavi Amarr
Ang, Mervin Chun-Yi
Cui, Jianqiao
Khong, Duc Thinh
Han, Yangyang
Loh, Suh In
Cheerlavancha, Raju
Singh, Gajendra Pratap
Rajani, Sarojam
Strano, Michael S.
description Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.
doi_str_mv 10.1021/jacs.3c01783
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2419267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820024996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EouVjY0YREwMpfnbiOCOEFpAqFQmYLffVKSlJXOwE1H9PohZYmJ78fHx9dQg5AzoCyuB6pdGPOFJIJN8jQ4gZDWNgYp8MKaUsTKTgA3Lk_ao7RkzCIRnwhHGaRmxIxs9FvSxNmLmNb3QZsLsgs5-6NHUTzNxS1wUGE6cr82Xduw9y64KnUneXt4VtDL7VtrTLzQk5yHXpzeluHpPXyfglewins_vH7GYaah5DE0qJXERADRoUIEU0R850NIccwAhGgVMEiUbHCaUiT2WeAi4kLrpNqqOEH5OLba71TaE8Fn0FtHVtsFEsgpSJHrrcQmtnP1rjG1UVHk3Z1Ta29YpJ1nmJ0lR06NUWRWe9dyZXa1dU2m0UUNXbVb1dtbPb4ee75HZemcUv_KPz7-v-1cq2ru5s_J_1DW_YgT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820024996</pqid></control><display><type>article</type><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S.</creator><creatorcontrib>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c01783</identifier><identifier>PMID: 37230942</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Abscisic Acid ; Biological Science Disciplines ; Biotechnology ; Chemistry ; Metal-Organic Frameworks ; Polymers</subject><ispartof>Journal of the American Chemical Society, 2023-06, Vol.145 (22), p.12155-12163</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</citedby><cites>FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</cites><orcidid>0000-0001-8561-1385 ; 0000-0002-6524-9881 ; 0000-0002-4420-9637 ; 0009-0008-2918-7901 ; 0000-0002-1854-0406 ; 0000-0001-9869-4538 ; 0000-0003-2944-808X ; 0000-0001-7001-385X ; 0000000244209637 ; 000000032944808X ; 0000000185611385 ; 0000000198694538 ; 0000000265249881 ; 000000017001385X ; 0009000829187901 ; 0000000218540406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37230942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2419267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Reddy, Vaishnavi Amarr</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Cui, Jianqiao</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Han, Yangyang</creatorcontrib><creatorcontrib>Loh, Suh In</creatorcontrib><creatorcontrib>Cheerlavancha, Raju</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Rajani, Sarojam</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</description><subject>Abscisic Acid</subject><subject>Biological Science Disciplines</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Metal-Organic Frameworks</subject><subject>Polymers</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAURS0EouVjY0YREwMpfnbiOCOEFpAqFQmYLffVKSlJXOwE1H9PohZYmJ78fHx9dQg5AzoCyuB6pdGPOFJIJN8jQ4gZDWNgYp8MKaUsTKTgA3Lk_ao7RkzCIRnwhHGaRmxIxs9FvSxNmLmNb3QZsLsgs5-6NHUTzNxS1wUGE6cr82Xduw9y64KnUneXt4VtDL7VtrTLzQk5yHXpzeluHpPXyfglewins_vH7GYaah5DE0qJXERADRoUIEU0R850NIccwAhGgVMEiUbHCaUiT2WeAi4kLrpNqqOEH5OLba71TaE8Fn0FtHVtsFEsgpSJHrrcQmtnP1rjG1UVHk3Z1Ta29YpJ1nmJ0lR06NUWRWe9dyZXa1dU2m0UUNXbVb1dtbPb4ee75HZemcUv_KPz7-v-1cq2ru5s_J_1DW_YgT0</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Wang, Song</creator><creator>Reddy, Vaishnavi Amarr</creator><creator>Ang, Mervin Chun-Yi</creator><creator>Cui, Jianqiao</creator><creator>Khong, Duc Thinh</creator><creator>Han, Yangyang</creator><creator>Loh, Suh In</creator><creator>Cheerlavancha, Raju</creator><creator>Singh, Gajendra Pratap</creator><creator>Rajani, Sarojam</creator><creator>Strano, Michael S.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-6524-9881</orcidid><orcidid>https://orcid.org/0000-0002-4420-9637</orcidid><orcidid>https://orcid.org/0009-0008-2918-7901</orcidid><orcidid>https://orcid.org/0000-0002-1854-0406</orcidid><orcidid>https://orcid.org/0000-0001-9869-4538</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000-0001-7001-385X</orcidid><orcidid>https://orcid.org/0000000244209637</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/0000000198694538</orcidid><orcidid>https://orcid.org/0000000265249881</orcidid><orcidid>https://orcid.org/000000017001385X</orcidid><orcidid>https://orcid.org/0009000829187901</orcidid><orcidid>https://orcid.org/0000000218540406</orcidid></search><sort><creationdate>20230607</creationdate><title>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</title><author>Wang, Song ; Reddy, Vaishnavi Amarr ; Ang, Mervin Chun-Yi ; Cui, Jianqiao ; Khong, Duc Thinh ; Han, Yangyang ; Loh, Suh In ; Cheerlavancha, Raju ; Singh, Gajendra Pratap ; Rajani, Sarojam ; Strano, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abscisic Acid</topic><topic>Biological Science Disciplines</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Metal-Organic Frameworks</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Reddy, Vaishnavi Amarr</creatorcontrib><creatorcontrib>Ang, Mervin Chun-Yi</creatorcontrib><creatorcontrib>Cui, Jianqiao</creatorcontrib><creatorcontrib>Khong, Duc Thinh</creatorcontrib><creatorcontrib>Han, Yangyang</creatorcontrib><creatorcontrib>Loh, Suh In</creatorcontrib><creatorcontrib>Cheerlavancha, Raju</creatorcontrib><creatorcontrib>Singh, Gajendra Pratap</creatorcontrib><creatorcontrib>Rajani, Sarojam</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Song</au><au>Reddy, Vaishnavi Amarr</au><au>Ang, Mervin Chun-Yi</au><au>Cui, Jianqiao</au><au>Khong, Duc Thinh</au><au>Han, Yangyang</au><au>Loh, Suh In</au><au>Cheerlavancha, Raju</au><au>Singh, Gajendra Pratap</au><au>Rajani, Sarojam</au><au>Strano, Michael S.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>145</volume><issue>22</issue><spage>12155</spage><epage>12163</epage><pages>12155-12163</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37230942</pmid><doi>10.1021/jacs.3c01783</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8561-1385</orcidid><orcidid>https://orcid.org/0000-0002-6524-9881</orcidid><orcidid>https://orcid.org/0000-0002-4420-9637</orcidid><orcidid>https://orcid.org/0009-0008-2918-7901</orcidid><orcidid>https://orcid.org/0000-0002-1854-0406</orcidid><orcidid>https://orcid.org/0000-0001-9869-4538</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000-0001-7001-385X</orcidid><orcidid>https://orcid.org/0000000244209637</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000185611385</orcidid><orcidid>https://orcid.org/0000000198694538</orcidid><orcidid>https://orcid.org/0000000265249881</orcidid><orcidid>https://orcid.org/000000017001385X</orcidid><orcidid>https://orcid.org/0009000829187901</orcidid><orcidid>https://orcid.org/0000000218540406</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-06, Vol.145 (22), p.12155-12163
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_2419267
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Abscisic Acid
Biological Science Disciplines
Biotechnology
Chemistry
Metal-Organic Frameworks
Polymers
title Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Crystal%202D%20Covalent%20Organic%20Frameworks%20for%20Plant%20Biotechnology&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Song&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2023-06-07&rft.volume=145&rft.issue=22&rft.spage=12155&rft.epage=12163&rft.pages=12155-12163&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c01783&rft_dat=%3Cproquest_osti_%3E2820024996%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-88c36410ecec61864bc32a4b1f11e620130c18cea57006f98f91cd8cdea59a473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820024996&rft_id=info:pmid/37230942&rfr_iscdi=true