Loading…
Non-Fermi Liquids from Kinetic Constraints in Tilted Optical Lattices
Here we study Fermi-Hubbard models with kinetically constrained dynamics that conserves both total particle number and total center of mass, a situation that arises when interacting fermions are placed in strongly tilted optical lattices. Through a combination of analytics and numerics, we show how...
Saved in:
Published in: | Physical review letters 2023-07, Vol.131 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we study Fermi-Hubbard models with kinetically constrained dynamics that conserves both total particle number and total center of mass, a situation that arises when interacting fermions are placed in strongly tilted optical lattices. Through a combination of analytics and numerics, we show how the kinetic constraints stabilize an exotic non-Fermi liquid phase described by fermions coupled to a gapless bosonic field, which in several respects mimics a dynamical gauge field. This offers a novel route towards the study of non-Fermi liquid phases in the precision environments afforded by ultracold atom platforms. |
---|---|
ISSN: | 0031-9007 |