Loading…
Ethanol Upgrading to n‑Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks
The upgrading of ethanol to n-butanol was performed using a molecular catalyst integrated into a carbon nitride support, one of the first examples of a supported molecular catalyst performing the Guerbet process. Initial studies using crystalline poly(triazine)imide (PTI) with lithium or transitio...
Saved in:
Published in: | ACS applied materials & interfaces 2023-08, Vol.15 (30), p.36384-36393 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The upgrading of ethanol to n-butanol was performed using a molecular catalyst integrated into a carbon nitride support, one of the first examples of a supported molecular catalyst performing the Guerbet process. Initial studies using crystalline poly(triazine)imide (PTI) with lithium or transition-metal cations imbedded in the support together with a base as the catalyst system did not produce any significant amounts of n-butanol. However, when using the catalyst material formed by treatment of PTI-LiCl with [(Cp*)IrCl2]2 (Cp* = pentamethylcyclopentadienyl) along with sodium hydroxide, a 59% selectivity for butanol (13% yield) was obtained at 145 °C. This PTI-(Cp*)Ir material exhibited distinct UV–vis absorption features and powder X-ray diffractions which differ from those of the parent PTI-LiCl and [(Cp*)IrCl2]2. The PTI-(Cp*)Ir material was found to have a metal loading of 27% iridium per empirical unit of the framework. Along with the formation of n-butanol from the Guerbet reaction, the presence of higher chain alcohols was also observed. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c07396 |