Loading…

Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2

We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multi...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2023-06, Vol.62 (23), p.e202302152-n/a
Main Authors: Choi, Chungseok, Zhao, Fengyi, Hart, James L, Gao, Yuanzuo, Menges, Fabian, Rooney, Conor L., Harmon, Nia J., Shang, Bo, Xu, Zihao, Suo, Sa, Sam, Quynh, Cha, Judy J., Lian, Tianquan, Wang, Hailiang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 23
container_start_page e202302152
container_title Angewandte Chemie International Edition
container_volume 62
creator Choi, Chungseok
Zhao, Fengyi
Hart, James L
Gao, Yuanzuo
Menges, Fabian
Rooney, Conor L.
Harmon, Nia J.
Shang, Bo
Xu, Zihao
Suo, Sa
Sam, Quynh
Cha, Judy J.
Lian, Tianquan
Wang, Hailiang
description We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron‐hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time‐resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine‐captured CO2, namely carbamates, for direct photochemical conversion without additional energy input. A ternary hybrid photocatalyst architecture is developed to convert amine‐captured CO2 to syngas with solar energy. The carbon nanotube plays key roles in transferring photoexcited electrons from the quantum dot to the molecular catalyst and in generating local heat from light irradiation for carbamate activation.
doi_str_mv 10.1002/anie.202302152
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2421786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818563606</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3332-56483db59fc2795aa5b9f1e6a47a752c6c3597ca49e90cd2b01158c9370831713</originalsourceid><addsrcrecordid>eNpdkU1PAjEQhjdGExG9em704mWxH9tt90hWEBIiJurFS1NKF0qWFtsiwV9vCYaDl_lInnlnJm-W3SLYQxDiR2mN7mGICcSI4rOskyLKCWPkPNUFITnjFF1mVyGsEs85LDvZ59vear8wP8YuwKDVKnpngbRzMNIygmHrdgEYC16XLjolo2z3IYLGefBkfKJB7ey39sGkKdeAWm7i1us5qKf4OrtoZBv0zV_uZh_DwXs9yifT53Hdn-SOEIJzWhaczGe0ahRmFZWSzqoG6VIWTDKKVakIrZiSRaUrqOZ4BhGiXFWEQU4QQ6Sb3R11XYhGBGWiVkvlrE3nCVxgxHiZoIcjtPHua6tDFGsTlG5babXbBpFWJy0IyUHv_h-6cltv0wsCc8RpSUp4EKyO1M60ei823qyl3wsExcEMcTBDnMwQ_Zfx4NSRX95TfaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818563606</pqid></control><display><type>article</type><title>Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2</title><source>Wiley</source><creator>Choi, Chungseok ; Zhao, Fengyi ; Hart, James L ; Gao, Yuanzuo ; Menges, Fabian ; Rooney, Conor L. ; Harmon, Nia J. ; Shang, Bo ; Xu, Zihao ; Suo, Sa ; Sam, Quynh ; Cha, Judy J. ; Lian, Tianquan ; Wang, Hailiang</creator><creatorcontrib>Choi, Chungseok ; Zhao, Fengyi ; Hart, James L ; Gao, Yuanzuo ; Menges, Fabian ; Rooney, Conor L. ; Harmon, Nia J. ; Shang, Bo ; Xu, Zihao ; Suo, Sa ; Sam, Quynh ; Cha, Judy J. ; Lian, Tianquan ; Wang, Hailiang ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron‐hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time‐resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine‐captured CO2, namely carbamates, for direct photochemical conversion without additional energy input. A ternary hybrid photocatalyst architecture is developed to convert amine‐captured CO2 to syngas with solar energy. The carbon nanotube plays key roles in transferring photoexcited electrons from the quantum dot to the molecular catalyst and in generating local heat from light irradiation for carbamate activation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202302152</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Blackbody ; Cadmium ; Cadmium sulfide ; Carbamates (tradename) ; Carbon dioxide ; Chemical reduction ; Chemistry ; CO2 Capture ; CO2 Reduction ; Cobalt ; Direct conversion ; Electrons ; Heat flow ; Heat transfer ; Heat transmission ; Highways ; Molecular Catalyst ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Photocatalysts ; Photochemicals ; Photochemistry ; Photothermal conversion ; Quantum dots ; Solar energy ; Ternary Hybrid Material</subject><ispartof>Angewandte Chemie International Edition, 2023-06, Vol.62 (23), p.e202302152-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4409-2034 ; 0000000344092034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2421786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Zhao, Fengyi</creatorcontrib><creatorcontrib>Hart, James L</creatorcontrib><creatorcontrib>Gao, Yuanzuo</creatorcontrib><creatorcontrib>Menges, Fabian</creatorcontrib><creatorcontrib>Rooney, Conor L.</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Xu, Zihao</creatorcontrib><creatorcontrib>Suo, Sa</creatorcontrib><creatorcontrib>Sam, Quynh</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2</title><title>Angewandte Chemie International Edition</title><description>We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron‐hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time‐resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine‐captured CO2, namely carbamates, for direct photochemical conversion without additional energy input. A ternary hybrid photocatalyst architecture is developed to convert amine‐captured CO2 to syngas with solar energy. The carbon nanotube plays key roles in transferring photoexcited electrons from the quantum dot to the molecular catalyst and in generating local heat from light irradiation for carbamate activation.</description><subject>Blackbody</subject><subject>Cadmium</subject><subject>Cadmium sulfide</subject><subject>Carbamates (tradename)</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>CO2 Capture</subject><subject>CO2 Reduction</subject><subject>Cobalt</subject><subject>Direct conversion</subject><subject>Electrons</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Highways</subject><subject>Molecular Catalyst</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Photocatalysts</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photothermal conversion</subject><subject>Quantum dots</subject><subject>Solar energy</subject><subject>Ternary Hybrid Material</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PAjEQhjdGExG9em704mWxH9tt90hWEBIiJurFS1NKF0qWFtsiwV9vCYaDl_lInnlnJm-W3SLYQxDiR2mN7mGICcSI4rOskyLKCWPkPNUFITnjFF1mVyGsEs85LDvZ59vear8wP8YuwKDVKnpngbRzMNIygmHrdgEYC16XLjolo2z3IYLGefBkfKJB7ey39sGkKdeAWm7i1us5qKf4OrtoZBv0zV_uZh_DwXs9yifT53Hdn-SOEIJzWhaczGe0ahRmFZWSzqoG6VIWTDKKVakIrZiSRaUrqOZ4BhGiXFWEQU4QQ6Sb3R11XYhGBGWiVkvlrE3nCVxgxHiZoIcjtPHua6tDFGsTlG5babXbBpFWJy0IyUHv_h-6cltv0wsCc8RpSUp4EKyO1M60ei823qyl3wsExcEMcTBDnMwQ_Zfx4NSRX95TfaQ</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Choi, Chungseok</creator><creator>Zhao, Fengyi</creator><creator>Hart, James L</creator><creator>Gao, Yuanzuo</creator><creator>Menges, Fabian</creator><creator>Rooney, Conor L.</creator><creator>Harmon, Nia J.</creator><creator>Shang, Bo</creator><creator>Xu, Zihao</creator><creator>Suo, Sa</creator><creator>Sam, Quynh</creator><creator>Cha, Judy J.</creator><creator>Lian, Tianquan</creator><creator>Wang, Hailiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid></search><sort><creationdate>20230605</creationdate><title>Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2</title><author>Choi, Chungseok ; Zhao, Fengyi ; Hart, James L ; Gao, Yuanzuo ; Menges, Fabian ; Rooney, Conor L. ; Harmon, Nia J. ; Shang, Bo ; Xu, Zihao ; Suo, Sa ; Sam, Quynh ; Cha, Judy J. ; Lian, Tianquan ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3332-56483db59fc2795aa5b9f1e6a47a752c6c3597ca49e90cd2b01158c9370831713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blackbody</topic><topic>Cadmium</topic><topic>Cadmium sulfide</topic><topic>Carbamates (tradename)</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>CO2 Capture</topic><topic>CO2 Reduction</topic><topic>Cobalt</topic><topic>Direct conversion</topic><topic>Electrons</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Highways</topic><topic>Molecular Catalyst</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Photocatalysts</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photothermal conversion</topic><topic>Quantum dots</topic><topic>Solar energy</topic><topic>Ternary Hybrid Material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Chungseok</creatorcontrib><creatorcontrib>Zhao, Fengyi</creatorcontrib><creatorcontrib>Hart, James L</creatorcontrib><creatorcontrib>Gao, Yuanzuo</creatorcontrib><creatorcontrib>Menges, Fabian</creatorcontrib><creatorcontrib>Rooney, Conor L.</creatorcontrib><creatorcontrib>Harmon, Nia J.</creatorcontrib><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Xu, Zihao</creatorcontrib><creatorcontrib>Suo, Sa</creatorcontrib><creatorcontrib>Sam, Quynh</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Chungseok</au><au>Zhao, Fengyi</au><au>Hart, James L</au><au>Gao, Yuanzuo</au><au>Menges, Fabian</au><au>Rooney, Conor L.</au><au>Harmon, Nia J.</au><au>Shang, Bo</au><au>Xu, Zihao</au><au>Suo, Sa</au><au>Sam, Quynh</au><au>Cha, Judy J.</au><au>Lian, Tianquan</au><au>Wang, Hailiang</au><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-06-05</date><risdate>2023</risdate><volume>62</volume><issue>23</issue><spage>e202302152</spage><epage>n/a</epage><pages>e202302152-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron‐hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time‐resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine‐captured CO2, namely carbamates, for direct photochemical conversion without additional energy input. A ternary hybrid photocatalyst architecture is developed to convert amine‐captured CO2 to syngas with solar energy. The carbon nanotube plays key roles in transferring photoexcited electrons from the quantum dot to the molecular catalyst and in generating local heat from light irradiation for carbamate activation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202302152</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-06, Vol.62 (23), p.e202302152-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_2421786
source Wiley
subjects Blackbody
Cadmium
Cadmium sulfide
Carbamates (tradename)
Carbon dioxide
Chemical reduction
Chemistry
CO2 Capture
CO2 Reduction
Cobalt
Direct conversion
Electrons
Heat flow
Heat transfer
Heat transmission
Highways
Molecular Catalyst
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Photocatalysts
Photochemicals
Photochemistry
Photothermal conversion
Quantum dots
Solar energy
Ternary Hybrid Material
title Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergizing%20Electron%20and%20Heat%20Flows%20in%20Photocatalyst%20for%20Direct%20Conversion%20of%20Captured%20CO2&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Choi,%20Chungseok&rft.aucorp=University%20of%20North%20Carolina,%20Chapel%20Hill,%20NC%20(United%20States)&rft.date=2023-06-05&rft.volume=62&rft.issue=23&rft.spage=e202302152&rft.epage=n/a&rft.pages=e202302152-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202302152&rft_dat=%3Cproquest_osti_%3E2818563606%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o3332-56483db59fc2795aa5b9f1e6a47a752c6c3597ca49e90cd2b01158c9370831713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818563606&rft_id=info:pmid/&rfr_iscdi=true