Loading…

Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture

Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to sele...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-05, Vol.15 (19), p.23337-23342
Main Authors: He, Yiwen, Boone, Paul, Lieber, Austin R, Tong, Zi, Das, Prasenjit, Hornbostel, Katherine M, Wilmer, Christopher E, Rosi, Nathaniel L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43
cites cdi_FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43
container_end_page 23342
container_issue 19
container_start_page 23337
container_title ACS applied materials & interfaces
container_volume 15
creator He, Yiwen
Boone, Paul
Lieber, Austin R
Tong, Zi
Das, Prasenjit
Hornbostel, Katherine M
Wilmer, Christopher E
Rosi, Nathaniel L
description Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO , and the shell MOF is designed to block H O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO , N , and H O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO /H O diffusion selectivity can significantly reduce the effect of water on CO uptake.
doi_str_mv 10.1021/acsami.3c03457
format article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2424813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37141279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EolBYGZHFnuLPpB6rQKFSUQfoHDnOuTVK4sh2B_49RSmd7nTv897wIPRAyYwSRp-1ibpzM24IF7K4QDdUCZHNmWSX512ICbqN8ZuQnDMir9GEF1RQVqgbtF11Qwsd9Ekn53vsLda49AGyzz20LX6B6HY9XgxD8NrssfXhGPcxhYNJrt_hj80yjtcNZrjUQzoEuENXVrcR7k9zirbL16_yPVtv3lblYp0ZyoXKgNO8ETwXUhZW0lxa0xCoawNAC2oJ5XVDVFFLJhqhJFilKamNymGuFKkFn6Kn8a-PyVXRuARmb3zfg0kVE0zMKT9CsxEywccYwFZDcJ0OPxUl1Z_EapRYnSQeC49jYTjUHTRn_N8a_wX_n2zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>He, Yiwen ; Boone, Paul ; Lieber, Austin R ; Tong, Zi ; Das, Prasenjit ; Hornbostel, Katherine M ; Wilmer, Christopher E ; Rosi, Nathaniel L</creator><creatorcontrib>He, Yiwen ; Boone, Paul ; Lieber, Austin R ; Tong, Zi ; Das, Prasenjit ; Hornbostel, Katherine M ; Wilmer, Christopher E ; Rosi, Nathaniel L ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><description>Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO , and the shell MOF is designed to block H O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO , N , and H O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO /H O diffusion selectivity can significantly reduce the effect of water on CO uptake.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c03457</identifier><identifier>PMID: 37141279</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (19), p.23337-23342</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43</citedby><cites>FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43</cites><orcidid>0000-0001-8122-0926 ; 0000-0002-0265-2323 ; 0000-0002-7440-5727 ; 0000-0001-8025-8906 ; 0000000181220926 ; 0000000180258906 ; 0000000274405727 ; 0000000202652323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37141279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2424813$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yiwen</creatorcontrib><creatorcontrib>Boone, Paul</creatorcontrib><creatorcontrib>Lieber, Austin R</creatorcontrib><creatorcontrib>Tong, Zi</creatorcontrib><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Hornbostel, Katherine M</creatorcontrib><creatorcontrib>Wilmer, Christopher E</creatorcontrib><creatorcontrib>Rosi, Nathaniel L</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><title>Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO , and the shell MOF is designed to block H O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO , N , and H O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO /H O diffusion selectivity can significantly reduce the effect of water on CO uptake.</description><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EolBYGZHFnuLPpB6rQKFSUQfoHDnOuTVK4sh2B_49RSmd7nTv897wIPRAyYwSRp-1ibpzM24IF7K4QDdUCZHNmWSX512ICbqN8ZuQnDMir9GEF1RQVqgbtF11Qwsd9Ekn53vsLda49AGyzz20LX6B6HY9XgxD8NrssfXhGPcxhYNJrt_hj80yjtcNZrjUQzoEuENXVrcR7k9zirbL16_yPVtv3lblYp0ZyoXKgNO8ETwXUhZW0lxa0xCoawNAC2oJ5XVDVFFLJhqhJFilKamNymGuFKkFn6Kn8a-PyVXRuARmb3zfg0kVE0zMKT9CsxEywccYwFZDcJ0OPxUl1Z_EapRYnSQeC49jYTjUHTRn_N8a_wX_n2zw</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>He, Yiwen</creator><creator>Boone, Paul</creator><creator>Lieber, Austin R</creator><creator>Tong, Zi</creator><creator>Das, Prasenjit</creator><creator>Hornbostel, Katherine M</creator><creator>Wilmer, Christopher E</creator><creator>Rosi, Nathaniel L</creator><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8122-0926</orcidid><orcidid>https://orcid.org/0000-0002-0265-2323</orcidid><orcidid>https://orcid.org/0000-0002-7440-5727</orcidid><orcidid>https://orcid.org/0000-0001-8025-8906</orcidid><orcidid>https://orcid.org/0000000181220926</orcidid><orcidid>https://orcid.org/0000000180258906</orcidid><orcidid>https://orcid.org/0000000274405727</orcidid><orcidid>https://orcid.org/0000000202652323</orcidid></search><sort><creationdate>20230517</creationdate><title>Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture</title><author>He, Yiwen ; Boone, Paul ; Lieber, Austin R ; Tong, Zi ; Das, Prasenjit ; Hornbostel, Katherine M ; Wilmer, Christopher E ; Rosi, Nathaniel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yiwen</creatorcontrib><creatorcontrib>Boone, Paul</creatorcontrib><creatorcontrib>Lieber, Austin R</creatorcontrib><creatorcontrib>Tong, Zi</creatorcontrib><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Hornbostel, Katherine M</creatorcontrib><creatorcontrib>Wilmer, Christopher E</creatorcontrib><creatorcontrib>Rosi, Nathaniel L</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yiwen</au><au>Boone, Paul</au><au>Lieber, Austin R</au><au>Tong, Zi</au><au>Das, Prasenjit</au><au>Hornbostel, Katherine M</au><au>Wilmer, Christopher E</au><au>Rosi, Nathaniel L</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2023-05-17</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>23337</spage><epage>23342</epage><pages>23337-23342</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Adsorption-based capture of CO from flue gas and from air requires materials that have a high affinity for CO and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO , and the shell MOF is designed to block H O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO , N , and H O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO /H O diffusion selectivity can significantly reduce the effect of water on CO uptake.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><pmid>37141279</pmid><doi>10.1021/acsami.3c03457</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8122-0926</orcidid><orcidid>https://orcid.org/0000-0002-0265-2323</orcidid><orcidid>https://orcid.org/0000-0002-7440-5727</orcidid><orcidid>https://orcid.org/0000-0001-8025-8906</orcidid><orcidid>https://orcid.org/0000000181220926</orcidid><orcidid>https://orcid.org/0000000180258906</orcidid><orcidid>https://orcid.org/0000000274405727</orcidid><orcidid>https://orcid.org/0000000202652323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (19), p.23337-23342
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_2424813
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Materials Science
Science & Technology - Other Topics
title Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20Core-Shell%20Design%20Approach%20for%20Constructing%20MOFs%20for%20CO%202%20Capture&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Yiwen&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV%20(United%20States)&rft.date=2023-05-17&rft.volume=15&rft.issue=19&rft.spage=23337&rft.epage=23342&rft.pages=23337-23342&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c03457&rft_dat=%3Cpubmed_osti_%3E37141279%3C/pubmed_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1349-e316d4364557f5165fcd0ebbcee171f013bd097b524d495ef9a10bc96e8990b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/37141279&rfr_iscdi=true