Loading…

Sequential Dual Alignments Introduce Synergistic Effect on Hexagonal Boron Nitride Platelets for Superior Thermal Performance

Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual‐alignment approach, employing an extrusion‐printing‐induced shear force and rotating‐magnetic‐field‐induced force couple for platelet planarly al...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-06, Vol.36 (25), p.e2314097-n/a
Main Authors: Chen, Yunxia, Gao, Zhiming, Hoo, Simon A., Tipnis, Varun, Wang, Renjing, Mitevski, Ivan, Hitchcock, Dale, Simmons, Kevin L., Sun, Ya‐Ping, Sarntinoranont, Malisa, Huang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual‐alignment approach, employing an extrusion‐printing‐induced shear force and rotating‐magnetic‐field‐induced force couple for platelet planarly alignment in a yield‐stress support bath. It is hypothesized that the partial alignment induced by a directional shear force facilitates subsequent axial rotation of the platelets for planar alignment under an external force couple, resulting in a synergistic alignment effect. This sequential dual‐alignment approach achieves better planar alignment of 2D modified hexagonal boron nitride (mhBN). Specifically, the thermal conductivity of the 40 wt% mhBN/epoxy composite is significantly higher (692%) than that of unaligned composites, surpassing the cumulative effect of individual methods (only 133%) with a 5 times more synergistic effect. For 30, 40, and 50 wt% mhBN composites, the thermal conductivity values (5.9, 9.5, and 13.8 W m−1 K−1) show considerable improvement compared to the previously reported highest values (5.3, 6.6, and 8.6 W m−1 K−1). Additionally, a 3D mhBN/epoxy heat sink is printed and evaluated to demonstrate the feasibility of device fabrication. The approach enables the planar alignment of electrically or thermally conducting 2D fillers during 3D fabrication. Platelet partial alignment by a directional shear force facilitates the axial rotation of the platelets for subsequent planar alignment under an external‐force‐couple‐induced torque, and the sequential dual alignments result in a synergistic alignment effect. The realization of planar alignment of hexagonal boron nitride platelets is reported using the sequential dual‐alignment approach when printing in a yield‐stress support bath.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202314097