Loading…

Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset

Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very ti...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning: science and technology 2024-08, Vol.5 (3)
Main Authors: O’Shea, Finn H., Joung, Semin, Smith, David R., Ratner, Daniel, Coffee, Ryan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title Machine learning: science and technology
container_volume 5
creator O’Shea, Finn H.
Joung, Semin
Smith, David R.
Ratner, Daniel
Coffee, Ryan
description Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2428976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428976</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24289763</originalsourceid><addsrcrecordid>eNqNjbsKwkAQRRdRUNR_GOwDcWN81D4wvb0su5M4msyIswr69QaxsLS6l3sunI4Z2HlmEzvNs-5P75ux6jlNU5tPs9ymA9OshdhTQPYIjqVx9RMCRvSRhKGUG9xZ71e8PUgxQC3eReIKpAQMFX6Gml4taiSgAjHEE8KmKIpkA1EurnEXCC46xTgyvdLViuNvDs1ktz2s94lopKN6ar0nL8yt_mhndrlazLO_Tm8RfktP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><source>Publicly Available Content Database</source><creator>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan</creator><creatorcontrib>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; anomaly detection ; artificial intelligence ; edge localized mode ; ELM ; machine learning</subject><ispartof>Machine learning: science and technology, 2024-08, Vol.5 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000274650976 ; 0000000323987381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2428976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Shea, Finn H.</creatorcontrib><creatorcontrib>Joung, Semin</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>Coffee, Ryan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><title>Machine learning: science and technology</title><description>Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>anomaly detection</subject><subject>artificial intelligence</subject><subject>edge localized mode</subject><subject>ELM</subject><subject>machine learning</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjbsKwkAQRRdRUNR_GOwDcWN81D4wvb0su5M4msyIswr69QaxsLS6l3sunI4Z2HlmEzvNs-5P75ux6jlNU5tPs9ymA9OshdhTQPYIjqVx9RMCRvSRhKGUG9xZ71e8PUgxQC3eReIKpAQMFX6Gml4taiSgAjHEE8KmKIpkA1EurnEXCC46xTgyvdLViuNvDs1ktz2s94lopKN6ar0nL8yt_mhndrlazLO_Tm8RfktP</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>O’Shea, Finn H.</creator><creator>Joung, Semin</creator><creator>Smith, David R.</creator><creator>Ratner, Daniel</creator><creator>Coffee, Ryan</creator><general>IOP Publishing</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000274650976</orcidid><orcidid>https://orcid.org/0000000323987381</orcidid></search><sort><creationdate>20240820</creationdate><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><author>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24289763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>anomaly detection</topic><topic>artificial intelligence</topic><topic>edge localized mode</topic><topic>ELM</topic><topic>machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Shea, Finn H.</creatorcontrib><creatorcontrib>Joung, Semin</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>Coffee, Ryan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Shea, Finn H.</au><au>Joung, Semin</au><au>Smith, David R.</au><au>Ratner, Daniel</au><au>Coffee, Ryan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</atitle><jtitle>Machine learning: science and technology</jtitle><date>2024-08-20</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</abstract><cop>United States</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0000000274650976</orcidid><orcidid>https://orcid.org/0000000323987381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2024-08, Vol.5 (3)
issn 2632-2153
2632-2153
language eng
recordid cdi_osti_scitechconnect_2428976
source Publicly Available Content Database
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
anomaly detection
artificial intelligence
edge localized mode
ELM
machine learning
title Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coincidence%20anomaly%20detection%20for%20unsupervised%20locating%20of%20edge%20localized%20modes%20in%20the%20DIII-D%20tokamak%20dataset&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=O%E2%80%99Shea,%20Finn%20H.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-08-20&rft.volume=5&rft.issue=3&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/&rft_dat=%3Costi%3E2428976%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_24289763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true