Loading…
Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset
Abstract Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very ti...
Saved in:
Published in: | Machine learning: science and technology 2024-08, Vol.5 (3) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Machine learning: science and technology |
container_volume | 5 |
creator | O’Shea, Finn H. Joung, Semin Smith, David R. Ratner, Daniel Coffee, Ryan |
description | Abstract
Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2428976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428976</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24289763</originalsourceid><addsrcrecordid>eNqNjbsKwkAQRRdRUNR_GOwDcWN81D4wvb0su5M4msyIswr69QaxsLS6l3sunI4Z2HlmEzvNs-5P75ux6jlNU5tPs9ymA9OshdhTQPYIjqVx9RMCRvSRhKGUG9xZ71e8PUgxQC3eReIKpAQMFX6Gml4taiSgAjHEE8KmKIpkA1EurnEXCC46xTgyvdLViuNvDs1ktz2s94lopKN6ar0nL8yt_mhndrlazLO_Tm8RfktP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><source>Publicly Available Content Database</source><creator>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan</creator><creatorcontrib>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Abstract
Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; anomaly detection ; artificial intelligence ; edge localized mode ; ELM ; machine learning</subject><ispartof>Machine learning: science and technology, 2024-08, Vol.5 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000274650976 ; 0000000323987381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2428976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Shea, Finn H.</creatorcontrib><creatorcontrib>Joung, Semin</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>Coffee, Ryan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><title>Machine learning: science and technology</title><description>Abstract
Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>anomaly detection</subject><subject>artificial intelligence</subject><subject>edge localized mode</subject><subject>ELM</subject><subject>machine learning</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjbsKwkAQRRdRUNR_GOwDcWN81D4wvb0su5M4msyIswr69QaxsLS6l3sunI4Z2HlmEzvNs-5P75ux6jlNU5tPs9ymA9OshdhTQPYIjqVx9RMCRvSRhKGUG9xZ71e8PUgxQC3eReIKpAQMFX6Gml4taiSgAjHEE8KmKIpkA1EurnEXCC46xTgyvdLViuNvDs1ktz2s94lopKN6ar0nL8yt_mhndrlazLO_Tm8RfktP</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>O’Shea, Finn H.</creator><creator>Joung, Semin</creator><creator>Smith, David R.</creator><creator>Ratner, Daniel</creator><creator>Coffee, Ryan</creator><general>IOP Publishing</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000274650976</orcidid><orcidid>https://orcid.org/0000000323987381</orcidid></search><sort><creationdate>20240820</creationdate><title>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</title><author>O’Shea, Finn H. ; Joung, Semin ; Smith, David R. ; Ratner, Daniel ; Coffee, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24289763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>anomaly detection</topic><topic>artificial intelligence</topic><topic>edge localized mode</topic><topic>ELM</topic><topic>machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Shea, Finn H.</creatorcontrib><creatorcontrib>Joung, Semin</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>Coffee, Ryan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Shea, Finn H.</au><au>Joung, Semin</au><au>Smith, David R.</au><au>Ratner, Daniel</au><au>Coffee, Ryan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset</atitle><jtitle>Machine learning: science and technology</jtitle><date>2024-08-20</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>Abstract
Using supervised learning to train a machine learning model to predict an on-coming Edge Localized Mode (ELM) requires a large number of labeled samples. Creating an appropriate data set from the very large database of discharges at a long-running tokamak, such as DIII-D, would be a very time-consuming process for a human. Considering this need and difficulty, we use coincidence anomaly detection, an unsupervised learning technique, to train an ELM-identifier to identify and label ELMs in the DIII-D discharge database. This ELM-identifier shows, simultaneously, a precision of 0.68 and a recall of 0.63 (AUC is 0.73) on identifying ELMs in example time series pulled from thousands of discharges spanning five years. In a test set of 50 discharges, the algorithm finds over 26 thousand ELM candidates, more than 5 times the existing catalog of ELMs labeled by humans.</abstract><cop>United States</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0000000274650976</orcidid><orcidid>https://orcid.org/0000000323987381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2024-08, Vol.5 (3) |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_osti_scitechconnect_2428976 |
source | Publicly Available Content Database |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY anomaly detection artificial intelligence edge localized mode ELM machine learning |
title | Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coincidence%20anomaly%20detection%20for%20unsupervised%20locating%20of%20edge%20localized%20modes%20in%20the%20DIII-D%20tokamak%20dataset&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=O%E2%80%99Shea,%20Finn%20H.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-08-20&rft.volume=5&rft.issue=3&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/&rft_dat=%3Costi%3E2428976%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_24289763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |