Loading…
Bayesian learning of gas transport in three-dimensional fracture networks
Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface b...
Saved in:
Published in: | Computers & geosciences 2024-10, Vol.192, p.105700, Article 105700 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3 |
container_end_page | |
container_issue | |
container_start_page | 105700 |
container_title | Computers & geosciences |
container_volume | 192 |
creator | Shi, Yingqi Berry, Donald J. Kath, John Lodhy, Shams Ly, An Percus, Allon G. Hyman, Jeffrey D. Moran, Kelly Strait, Justin Sweeney, Matthew R. Viswanathan, Hari S. Stauffer, Philip H. |
description | Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.
•We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling. |
doi_str_mv | 10.1016/j.cageo.2024.105700 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2429035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300424001833</els_id><sourcerecordid>S0098300424001833</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhnNQsH78Ai_B-9bZJLubPXjQ4keh4EXPIZvMtqltUpKo9N-763oWBgaG93kZHkKuS5iXUNa327nRawxzBkwMl6oBOCEzgFYWHECckfOUtgDAmKxmZPmgj5ic9nSHOnrn1zT0dK0TzVH7dAgxU-dp3kTEwro9-uSC1zvaR23yZ0TqMX-H-JEuyWmvdwmv_vYFeX96fFu8FKvX5-XiflVoxnkuDMpONLLFpmsbaxmXYpiWVwBlYyshOm46DQJaZm0rORd9XZfSCsks1Bb5BbmZekPKTiXjMpqNCd6jyYoJ1gKvhhCfQiaGlCL26hDdXsejKkGNmtRW_WpSoyY1aRqou4nC4f8vh3GsR2_Quji22-D-5X8AHT9zAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><source>Elsevier</source><creator>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H.</creator><creatorcontrib>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.
•We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</description><identifier>ISSN: 0098-3004</identifier><identifier>DOI: 10.1016/j.cageo.2024.105700</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Discrete fracture networks ; Gaussian process regression ; GEOSCIENCES ; Machine learning ; Subsurface hydrology ; Surrogate modeling ; Uncertainty quantification</subject><ispartof>Computers & geosciences, 2024-10, Vol.192, p.105700, Article 105700</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</cites><orcidid>0000-0003-3551-2885 ; 0000-0002-1178-9647 ; 0000-0002-4224-2847 ; 0000-0003-4356-9443 ; 0000-0002-0847-5284 ; 0000-0002-6976-221X ; 0000-0002-5160-4176 ; 0000000211789647 ; 0000000242242847 ; 0000000343569443 ; 0000000335512885 ; 0000000251604176 ; 000000026976221X ; 0000000208475284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2429035$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yingqi</creatorcontrib><creatorcontrib>Berry, Donald J.</creatorcontrib><creatorcontrib>Kath, John</creatorcontrib><creatorcontrib>Lodhy, Shams</creatorcontrib><creatorcontrib>Ly, An</creatorcontrib><creatorcontrib>Percus, Allon G.</creatorcontrib><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Moran, Kelly</creatorcontrib><creatorcontrib>Strait, Justin</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><title>Computers & geosciences</title><description>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.
•We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</description><subject>Discrete fracture networks</subject><subject>Gaussian process regression</subject><subject>GEOSCIENCES</subject><subject>Machine learning</subject><subject>Subsurface hydrology</subject><subject>Surrogate modeling</subject><subject>Uncertainty quantification</subject><issn>0098-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhnNQsH78Ai_B-9bZJLubPXjQ4keh4EXPIZvMtqltUpKo9N-763oWBgaG93kZHkKuS5iXUNa327nRawxzBkwMl6oBOCEzgFYWHECckfOUtgDAmKxmZPmgj5ic9nSHOnrn1zT0dK0TzVH7dAgxU-dp3kTEwro9-uSC1zvaR23yZ0TqMX-H-JEuyWmvdwmv_vYFeX96fFu8FKvX5-XiflVoxnkuDMpONLLFpmsbaxmXYpiWVwBlYyshOm46DQJaZm0rORd9XZfSCsks1Bb5BbmZekPKTiXjMpqNCd6jyYoJ1gKvhhCfQiaGlCL26hDdXsejKkGNmtRW_WpSoyY1aRqou4nC4f8vh3GsR2_Quji22-D-5X8AHT9zAA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Shi, Yingqi</creator><creator>Berry, Donald J.</creator><creator>Kath, John</creator><creator>Lodhy, Shams</creator><creator>Ly, An</creator><creator>Percus, Allon G.</creator><creator>Hyman, Jeffrey D.</creator><creator>Moran, Kelly</creator><creator>Strait, Justin</creator><creator>Sweeney, Matthew R.</creator><creator>Viswanathan, Hari S.</creator><creator>Stauffer, Philip H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3551-2885</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0003-4356-9443</orcidid><orcidid>https://orcid.org/0000-0002-0847-5284</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000343569443</orcidid><orcidid>https://orcid.org/0000000335512885</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000208475284</orcidid></search><sort><creationdate>20241001</creationdate><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><author>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Discrete fracture networks</topic><topic>Gaussian process regression</topic><topic>GEOSCIENCES</topic><topic>Machine learning</topic><topic>Subsurface hydrology</topic><topic>Surrogate modeling</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yingqi</creatorcontrib><creatorcontrib>Berry, Donald J.</creatorcontrib><creatorcontrib>Kath, John</creatorcontrib><creatorcontrib>Lodhy, Shams</creatorcontrib><creatorcontrib>Ly, An</creatorcontrib><creatorcontrib>Percus, Allon G.</creatorcontrib><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Moran, Kelly</creatorcontrib><creatorcontrib>Strait, Justin</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computers & geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yingqi</au><au>Berry, Donald J.</au><au>Kath, John</au><au>Lodhy, Shams</au><au>Ly, An</au><au>Percus, Allon G.</au><au>Hyman, Jeffrey D.</au><au>Moran, Kelly</au><au>Strait, Justin</au><au>Sweeney, Matthew R.</au><au>Viswanathan, Hari S.</au><au>Stauffer, Philip H.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian learning of gas transport in three-dimensional fracture networks</atitle><jtitle>Computers & geosciences</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>192</volume><spage>105700</spage><pages>105700-</pages><artnum>105700</artnum><issn>0098-3004</issn><abstract>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations.
•We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2024.105700</doi><orcidid>https://orcid.org/0000-0003-3551-2885</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0003-4356-9443</orcidid><orcidid>https://orcid.org/0000-0002-0847-5284</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000343569443</orcidid><orcidid>https://orcid.org/0000000335512885</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000208475284</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3004 |
ispartof | Computers & geosciences, 2024-10, Vol.192, p.105700, Article 105700 |
issn | 0098-3004 |
language | eng |
recordid | cdi_osti_scitechconnect_2429035 |
source | Elsevier |
subjects | Discrete fracture networks Gaussian process regression GEOSCIENCES Machine learning Subsurface hydrology Surrogate modeling Uncertainty quantification |
title | Bayesian learning of gas transport in three-dimensional fracture networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20learning%20of%20gas%20transport%20in%20three-dimensional%20fracture%20networks&rft.jtitle=Computers%20&%20geosciences&rft.au=Shi,%20Yingqi&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-10-01&rft.volume=192&rft.spage=105700&rft.pages=105700-&rft.artnum=105700&rft.issn=0098-3004&rft_id=info:doi/10.1016/j.cageo.2024.105700&rft_dat=%3Celsevier_osti_%3ES0098300424001833%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |