Loading…

Bayesian learning of gas transport in three-dimensional fracture networks

Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface b...

Full description

Saved in:
Bibliographic Details
Published in:Computers & geosciences 2024-10, Vol.192, p.105700, Article 105700
Main Authors: Shi, Yingqi, Berry, Donald J., Kath, John, Lodhy, Shams, Ly, An, Percus, Allon G., Hyman, Jeffrey D., Moran, Kelly, Strait, Justin, Sweeney, Matthew R., Viswanathan, Hari S., Stauffer, Philip H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3
container_end_page
container_issue
container_start_page 105700
container_title Computers & geosciences
container_volume 192
creator Shi, Yingqi
Berry, Donald J.
Kath, John
Lodhy, Shams
Ly, An
Percus, Allon G.
Hyman, Jeffrey D.
Moran, Kelly
Strait, Justin
Sweeney, Matthew R.
Viswanathan, Hari S.
Stauffer, Philip H.
description Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations. •We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.
doi_str_mv 10.1016/j.cageo.2024.105700
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2429035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300424001833</els_id><sourcerecordid>S0098300424001833</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhnNQsH78Ai_B-9bZJLubPXjQ4keh4EXPIZvMtqltUpKo9N-763oWBgaG93kZHkKuS5iXUNa327nRawxzBkwMl6oBOCEzgFYWHECckfOUtgDAmKxmZPmgj5ic9nSHOnrn1zT0dK0TzVH7dAgxU-dp3kTEwro9-uSC1zvaR23yZ0TqMX-H-JEuyWmvdwmv_vYFeX96fFu8FKvX5-XiflVoxnkuDMpONLLFpmsbaxmXYpiWVwBlYyshOm46DQJaZm0rORd9XZfSCsks1Bb5BbmZekPKTiXjMpqNCd6jyYoJ1gKvhhCfQiaGlCL26hDdXsejKkGNmtRW_WpSoyY1aRqou4nC4f8vh3GsR2_Quji22-D-5X8AHT9zAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><source>Elsevier</source><creator>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H.</creator><creatorcontrib>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations. •We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</description><identifier>ISSN: 0098-3004</identifier><identifier>DOI: 10.1016/j.cageo.2024.105700</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Discrete fracture networks ; Gaussian process regression ; GEOSCIENCES ; Machine learning ; Subsurface hydrology ; Surrogate modeling ; Uncertainty quantification</subject><ispartof>Computers &amp; geosciences, 2024-10, Vol.192, p.105700, Article 105700</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</cites><orcidid>0000-0003-3551-2885 ; 0000-0002-1178-9647 ; 0000-0002-4224-2847 ; 0000-0003-4356-9443 ; 0000-0002-0847-5284 ; 0000-0002-6976-221X ; 0000-0002-5160-4176 ; 0000000211789647 ; 0000000242242847 ; 0000000343569443 ; 0000000335512885 ; 0000000251604176 ; 000000026976221X ; 0000000208475284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2429035$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yingqi</creatorcontrib><creatorcontrib>Berry, Donald J.</creatorcontrib><creatorcontrib>Kath, John</creatorcontrib><creatorcontrib>Lodhy, Shams</creatorcontrib><creatorcontrib>Ly, An</creatorcontrib><creatorcontrib>Percus, Allon G.</creatorcontrib><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Moran, Kelly</creatorcontrib><creatorcontrib>Strait, Justin</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><title>Computers &amp; geosciences</title><description>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations. •We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</description><subject>Discrete fracture networks</subject><subject>Gaussian process regression</subject><subject>GEOSCIENCES</subject><subject>Machine learning</subject><subject>Subsurface hydrology</subject><subject>Surrogate modeling</subject><subject>Uncertainty quantification</subject><issn>0098-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhnNQsH78Ai_B-9bZJLubPXjQ4keh4EXPIZvMtqltUpKo9N-763oWBgaG93kZHkKuS5iXUNa327nRawxzBkwMl6oBOCEzgFYWHECckfOUtgDAmKxmZPmgj5ic9nSHOnrn1zT0dK0TzVH7dAgxU-dp3kTEwro9-uSC1zvaR23yZ0TqMX-H-JEuyWmvdwmv_vYFeX96fFu8FKvX5-XiflVoxnkuDMpONLLFpmsbaxmXYpiWVwBlYyshOm46DQJaZm0rORd9XZfSCsks1Bb5BbmZekPKTiXjMpqNCd6jyYoJ1gKvhhCfQiaGlCL26hDdXsejKkGNmtRW_WpSoyY1aRqou4nC4f8vh3GsR2_Quji22-D-5X8AHT9zAA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Shi, Yingqi</creator><creator>Berry, Donald J.</creator><creator>Kath, John</creator><creator>Lodhy, Shams</creator><creator>Ly, An</creator><creator>Percus, Allon G.</creator><creator>Hyman, Jeffrey D.</creator><creator>Moran, Kelly</creator><creator>Strait, Justin</creator><creator>Sweeney, Matthew R.</creator><creator>Viswanathan, Hari S.</creator><creator>Stauffer, Philip H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3551-2885</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0003-4356-9443</orcidid><orcidid>https://orcid.org/0000-0002-0847-5284</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000343569443</orcidid><orcidid>https://orcid.org/0000000335512885</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000208475284</orcidid></search><sort><creationdate>20241001</creationdate><title>Bayesian learning of gas transport in three-dimensional fracture networks</title><author>Shi, Yingqi ; Berry, Donald J. ; Kath, John ; Lodhy, Shams ; Ly, An ; Percus, Allon G. ; Hyman, Jeffrey D. ; Moran, Kelly ; Strait, Justin ; Sweeney, Matthew R. ; Viswanathan, Hari S. ; Stauffer, Philip H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Discrete fracture networks</topic><topic>Gaussian process regression</topic><topic>GEOSCIENCES</topic><topic>Machine learning</topic><topic>Subsurface hydrology</topic><topic>Surrogate modeling</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yingqi</creatorcontrib><creatorcontrib>Berry, Donald J.</creatorcontrib><creatorcontrib>Kath, John</creatorcontrib><creatorcontrib>Lodhy, Shams</creatorcontrib><creatorcontrib>Ly, An</creatorcontrib><creatorcontrib>Percus, Allon G.</creatorcontrib><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Moran, Kelly</creatorcontrib><creatorcontrib>Strait, Justin</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yingqi</au><au>Berry, Donald J.</au><au>Kath, John</au><au>Lodhy, Shams</au><au>Ly, An</au><au>Percus, Allon G.</au><au>Hyman, Jeffrey D.</au><au>Moran, Kelly</au><au>Strait, Justin</au><au>Sweeney, Matthew R.</au><au>Viswanathan, Hari S.</au><au>Stauffer, Philip H.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian learning of gas transport in three-dimensional fracture networks</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>192</volume><spage>105700</spage><pages>105700-</pages><artnum>105700</artnum><issn>0098-3004</issn><abstract>Modeling gas flow through fractures of subsurface rock is a particularly challenging problem because of the heterogeneous nature of the material. High-fidelity simulations using discrete fracture network (DFN) models are one methodology for predicting gas particle breakthrough times at the surface but are computationally demanding. We propose a Bayesian machine learning method that serves as an efficient surrogate model, or emulator, for these three-dimensional DFN simulations. Our model trains on a small quantity of simulation data with given statistical properties and, using a graph/path-based decomposition of the fracture network, rapidly predicts quantiles of the breakthrough time distribution on DFNs with those statistical properties. The approach, based on Gaussian Process Regression (GPR), outputs predictions that are within 20%–30% of high-fidelity DFN simulation results. Unlike previously proposed methods, it also provides uncertainty quantification, outputting confidence intervals that are essential given the uncertainty inherent in subsurface modeling. Our trained model runs within a fraction of a second, considerably faster than reduced-order models yielding comparable accuracy (Hyman et al., 2017; Karra et al., 2018) and multiple orders of magnitude faster than high-fidelity simulations. •We predict gas flow in 3D fracture networks using Gaussian process regression.•Our novel machine learning approach trains on high-fidelity simulation data.•Predictions of particle arrival times are within 20%–30% of high-fidelity results.•The method is orders of magnitude faster than high-fidelity simulations.•We provide confidence intervals, crucial given uncertainties in subsurface modeling.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2024.105700</doi><orcidid>https://orcid.org/0000-0003-3551-2885</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0003-4356-9443</orcidid><orcidid>https://orcid.org/0000-0002-0847-5284</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000343569443</orcidid><orcidid>https://orcid.org/0000000335512885</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000208475284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2024-10, Vol.192, p.105700, Article 105700
issn 0098-3004
language eng
recordid cdi_osti_scitechconnect_2429035
source Elsevier
subjects Discrete fracture networks
Gaussian process regression
GEOSCIENCES
Machine learning
Subsurface hydrology
Surrogate modeling
Uncertainty quantification
title Bayesian learning of gas transport in three-dimensional fracture networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20learning%20of%20gas%20transport%20in%20three-dimensional%20fracture%20networks&rft.jtitle=Computers%20&%20geosciences&rft.au=Shi,%20Yingqi&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-10-01&rft.volume=192&rft.spage=105700&rft.pages=105700-&rft.artnum=105700&rft.issn=0098-3004&rft_id=info:doi/10.1016/j.cageo.2024.105700&rft_dat=%3Celsevier_osti_%3ES0098300424001833%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a233t-ce8b4789e7b97dd23843849350017d544b3cba04092dd98334f6618d482d06de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true