Loading…
An Octacarboxylate-Linked Sodium Metal–Organic Framework with High Porosity
Alkali metal-based metal–organic frameworks (MOFs) with permanent porosity are scarce because of their high tendency to coordinate with solvents such as water. However, these MOFs are lightweight and bear gravimetric benefits for gas adsorption related applications. In this study, we present the suc...
Saved in:
Published in: | Journal of the American Chemical Society 2024-01, Vol.146 (1), p.84-88 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alkali metal-based metal–organic frameworks (MOFs) with permanent porosity are scarce because of their high tendency to coordinate with solvents such as water. However, these MOFs are lightweight and bear gravimetric benefits for gas adsorption related applications. In this study, we present the successful construction of a microporous MOF, designated as HIAM-111, built solely on sodium ions by using an octacarboxylate linker. The structure of HIAM-111 is based on 8-connected Na4 clusters and exhibits a novel topology with an underlying 32,42,8-c net. Remarkably, HAM-111 possesses a robust and highly porous framework with a BET surface area of 1561 m2/g, significantly surpassing that of the previously reported Na-MOFs. Further investigations demonstrate that HIAM-111 is capable of separating C2H2/CO2 and purifying C2H4 directly from C2H4/C2H2/C2H6 with high adsorption capacities. The current work may shed light on the rational design of robust and porous MOFs based on alkali metals. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.3c11260 |