Loading…

Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability

Pushing intercalation‐type cathode materials to their theoretical capacity often suffers from fragile Li‐deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathod...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2405519-n/a
Main Authors: Huang, Weiyuan, Li, Jianyuan, Zhao, Qinghe, Li, Shunning, Ge, Mingyuan, Fang, Jianjun, Chen, Zhefeng, Yu, Lei, Huang, Xiaozhou, Zhao, Wenguang, Huang, Xiaojing, Ren, Guoxi, Zhang, Nian, He, Lunhua, Wen, Jianguo, Yang, Wanli, Zhang, Mingjian, Liu, Tongchao, Amine, Khalil, Pan, Feng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 32
container_start_page e2405519
container_title Advanced materials (Weinheim)
container_volume 36
creator Huang, Weiyuan
Li, Jianyuan
Zhao, Qinghe
Li, Shunning
Ge, Mingyuan
Fang, Jianjun
Chen, Zhefeng
Yu, Lei
Huang, Xiaozhou
Zhao, Wenguang
Huang, Xiaojing
Ren, Guoxi
Zhang, Nian
He, Lunhua
Wen, Jianguo
Yang, Wanli
Zhang, Mingjian
Liu, Tongchao
Amine, Khalil
Pan, Feng
description Pushing intercalation‐type cathode materials to their theoretical capacity often suffers from fragile Li‐deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g−1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah‐level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X‐ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next‐generation high‐energy‐density battery materials through structural chemistry design. A high‐performance LCO cathode is developed with a gradient disordering structure design, enabling it to reach the capacity limit (up to 93% of Li utilization) while maintaining high cyclability and rate capability. Comprehensive analysis reveals this innovative structure fundamentally addresses the anisotropic lattice strain issue and exhibits remarkable fatigue resistance, even under harsh operating voltages.
doi_str_mv 10.1002/adma.202405519
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2432582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090215713</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2939-39c3ddfdd271aa167895d6a881847f7c9d43b683dc2075640b9782bc2bbb309c3</originalsourceid><addsrcrecordid>eNpdkUlPwzAQRi0EEmW5co7gwiUw3pL4WIVVKmIRPVuO7Tau3LjEqVD-PUZFPXAajebNaD49hC4w3GAAcqvMWt0QIAw4x-IATTAnOGcg-CGagKA8FwWrjtFJjCsAEAUUE_T-YnWruqBbu3ZaeT9mH6HZxiGbuTq8kuzbDW0290OvWrdss1ptlHbDmKnOZG998KFbWpPVo_aqcT5NztDRQvloz__qKZo_3H_WT_ns9fG5ns7yQAQVORWaGrMwhpRYKVyUleCmUFWFK1YuSi0Mo01RUaMJlLxg0IiyIo0mTdNQSMun6HJ3N8TByZieSkl06DqrB0kYJbwiCbreQZs-fG1tHOTaRW29V50N2ygpFFAywQRO6NU_dBW2fZciJEoAwbzENFFiR307b0e56d1a9aPEIH8dyF8Hcu9ATu9epvuO_gCoRHtt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215713</pqid></control><display><type>article</type><title>Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Weiyuan ; Li, Jianyuan ; Zhao, Qinghe ; Li, Shunning ; Ge, Mingyuan ; Fang, Jianjun ; Chen, Zhefeng ; Yu, Lei ; Huang, Xiaozhou ; Zhao, Wenguang ; Huang, Xiaojing ; Ren, Guoxi ; Zhang, Nian ; He, Lunhua ; Wen, Jianguo ; Yang, Wanli ; Zhang, Mingjian ; Liu, Tongchao ; Amine, Khalil ; Pan, Feng</creator><creatorcontrib>Huang, Weiyuan ; Li, Jianyuan ; Zhao, Qinghe ; Li, Shunning ; Ge, Mingyuan ; Fang, Jianjun ; Chen, Zhefeng ; Yu, Lei ; Huang, Xiaozhou ; Zhao, Wenguang ; Huang, Xiaojing ; Ren, Guoxi ; Zhang, Nian ; He, Lunhua ; Wen, Jianguo ; Yang, Wanli ; Zhang, Mingjian ; Liu, Tongchao ; Amine, Khalil ; Pan, Feng ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Pushing intercalation‐type cathode materials to their theoretical capacity often suffers from fragile Li‐deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g−1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah‐level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X‐ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next‐generation high‐energy‐density battery materials through structural chemistry design. A high‐performance LCO cathode is developed with a gradient disordering structure design, enabling it to reach the capacity limit (up to 93% of Li utilization) while maintaining high cyclability and rate capability. Comprehensive analysis reveals this innovative structure fundamentally addresses the anisotropic lattice strain issue and exhibits remarkable fatigue resistance, even under harsh operating voltages.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405519</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Crack propagation ; Crystal lattices ; Crystal structure ; Electrode materials ; Electron diffraction ; Electrons ; Fatigue failure ; fatigue resistance ; Fatigue strength ; gradient disordering ; Imaging techniques ; Lattice strain ; Li-ion battery cathode ; Lithium compounds ; MATERIALS SCIENCE ; Phase transitions ; prolonged cyclability ; ultrahigh capacity</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405519-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9206-3719 ; 0000000192063719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2432582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Li, Jianyuan</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Huang, Xiaozhou</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Ren, Guoxi</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability</title><title>Advanced materials (Weinheim)</title><description>Pushing intercalation‐type cathode materials to their theoretical capacity often suffers from fragile Li‐deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g−1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah‐level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X‐ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next‐generation high‐energy‐density battery materials through structural chemistry design. A high‐performance LCO cathode is developed with a gradient disordering structure design, enabling it to reach the capacity limit (up to 93% of Li utilization) while maintaining high cyclability and rate capability. Comprehensive analysis reveals this innovative structure fundamentally addresses the anisotropic lattice strain issue and exhibits remarkable fatigue resistance, even under harsh operating voltages.</description><subject>Cathodes</subject><subject>Crack propagation</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Electrode materials</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Fatigue failure</subject><subject>fatigue resistance</subject><subject>Fatigue strength</subject><subject>gradient disordering</subject><subject>Imaging techniques</subject><subject>Lattice strain</subject><subject>Li-ion battery cathode</subject><subject>Lithium compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Phase transitions</subject><subject>prolonged cyclability</subject><subject>ultrahigh capacity</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQRi0EEmW5co7gwiUw3pL4WIVVKmIRPVuO7Tau3LjEqVD-PUZFPXAajebNaD49hC4w3GAAcqvMWt0QIAw4x-IATTAnOGcg-CGagKA8FwWrjtFJjCsAEAUUE_T-YnWruqBbu3ZaeT9mH6HZxiGbuTq8kuzbDW0290OvWrdss1ptlHbDmKnOZG998KFbWpPVo_aqcT5NztDRQvloz__qKZo_3H_WT_ns9fG5ns7yQAQVORWaGrMwhpRYKVyUleCmUFWFK1YuSi0Mo01RUaMJlLxg0IiyIo0mTdNQSMun6HJ3N8TByZieSkl06DqrB0kYJbwiCbreQZs-fG1tHOTaRW29V50N2ygpFFAywQRO6NU_dBW2fZciJEoAwbzENFFiR307b0e56d1a9aPEIH8dyF8Hcu9ATu9epvuO_gCoRHtt</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Weiyuan</creator><creator>Li, Jianyuan</creator><creator>Zhao, Qinghe</creator><creator>Li, Shunning</creator><creator>Ge, Mingyuan</creator><creator>Fang, Jianjun</creator><creator>Chen, Zhefeng</creator><creator>Yu, Lei</creator><creator>Huang, Xiaozhou</creator><creator>Zhao, Wenguang</creator><creator>Huang, Xiaojing</creator><creator>Ren, Guoxi</creator><creator>Zhang, Nian</creator><creator>He, Lunhua</creator><creator>Wen, Jianguo</creator><creator>Yang, Wanli</creator><creator>Zhang, Mingjian</creator><creator>Liu, Tongchao</creator><creator>Amine, Khalil</creator><creator>Pan, Feng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid></search><sort><creationdate>20240801</creationdate><title>Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability</title><author>Huang, Weiyuan ; Li, Jianyuan ; Zhao, Qinghe ; Li, Shunning ; Ge, Mingyuan ; Fang, Jianjun ; Chen, Zhefeng ; Yu, Lei ; Huang, Xiaozhou ; Zhao, Wenguang ; Huang, Xiaojing ; Ren, Guoxi ; Zhang, Nian ; He, Lunhua ; Wen, Jianguo ; Yang, Wanli ; Zhang, Mingjian ; Liu, Tongchao ; Amine, Khalil ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2939-39c3ddfdd271aa167895d6a881847f7c9d43b683dc2075640b9782bc2bbb309c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Crack propagation</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Electrode materials</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Fatigue failure</topic><topic>fatigue resistance</topic><topic>Fatigue strength</topic><topic>gradient disordering</topic><topic>Imaging techniques</topic><topic>Lattice strain</topic><topic>Li-ion battery cathode</topic><topic>Lithium compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Phase transitions</topic><topic>prolonged cyclability</topic><topic>ultrahigh capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Li, Jianyuan</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Ge, Mingyuan</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Huang, Xiaozhou</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Ren, Guoxi</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>He, Lunhua</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weiyuan</au><au>Li, Jianyuan</au><au>Zhao, Qinghe</au><au>Li, Shunning</au><au>Ge, Mingyuan</au><au>Fang, Jianjun</au><au>Chen, Zhefeng</au><au>Yu, Lei</au><au>Huang, Xiaozhou</au><au>Zhao, Wenguang</au><au>Huang, Xiaojing</au><au>Ren, Guoxi</au><au>Zhang, Nian</au><au>He, Lunhua</au><au>Wen, Jianguo</au><au>Yang, Wanli</au><au>Zhang, Mingjian</au><au>Liu, Tongchao</au><au>Amine, Khalil</au><au>Pan, Feng</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2405519</spage><epage>n/a</epage><pages>e2405519-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Pushing intercalation‐type cathode materials to their theoretical capacity often suffers from fragile Li‐deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g−1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah‐level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X‐ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next‐generation high‐energy‐density battery materials through structural chemistry design. A high‐performance LCO cathode is developed with a gradient disordering structure design, enabling it to reach the capacity limit (up to 93% of Li utilization) while maintaining high cyclability and rate capability. Comprehensive analysis reveals this innovative structure fundamentally addresses the anisotropic lattice strain issue and exhibits remarkable fatigue resistance, even under harsh operating voltages.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202405519</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405519-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_osti_scitechconnect_2432582
source Wiley-Blackwell Read & Publish Collection
subjects Cathodes
Crack propagation
Crystal lattices
Crystal structure
Electrode materials
Electron diffraction
Electrons
Fatigue failure
fatigue resistance
Fatigue strength
gradient disordering
Imaging techniques
Lattice strain
Li-ion battery cathode
Lithium compounds
MATERIALS SCIENCE
Phase transitions
prolonged cyclability
ultrahigh capacity
title Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemically%20Robust%20LiCoO2%20with%20Ultrahigh%20Capacity%20and%20Prolonged%20Cyclability&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Huang,%20Weiyuan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2405519&rft.epage=n/a&rft.pages=e2405519-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405519&rft_dat=%3Cproquest_osti_%3E3090215713%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o2939-39c3ddfdd271aa167895d6a881847f7c9d43b683dc2075640b9782bc2bbb309c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090215713&rft_id=info:pmid/&rfr_iscdi=true