Loading…

Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames

Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with metha...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Combustion Institute 2024-01, Vol.40 (1-4), p.105429, Article 105429
Main Authors: Howarth, T.L., Day, M.S., Pitsch, H., Aspden, A.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113
container_end_page
container_issue 1-4
container_start_page 105429
container_title Proceedings of the Combustion Institute
container_volume 40
creator Howarth, T.L.
Day, M.S.
Pitsch, H.
Aspden, A.J.
description Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.
doi_str_mv 10.1016/j.proci.2024.105429
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2441469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748924002372</els_id><sourcerecordid>S1540748924002372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcLE4k-JX4ubAAVW8pEpcytly7HXjKnEqO0Xl73EJZ067mp0ZzQ5Ct5QsKKHVw26xj4PxC0aYyEgpWH2GZnQpecEkEed5LwUppFjWl-gqpR0hXBJezlCzaSH2usPWO3dIfgj3GI6tPqQRb3XCEYyP5tDpMZ-wDhY3HQTrwxaDc2DGhDPegQ54H6H3R7C4_bZx2ELArtM9pGt04XSX4OZvztHny_Nm9VasP17fV0_rwrCyHAsn67ISjWNWc-C1LqVurKakMoLZsuKV0EYTyW2tG6DWiiVAJQVn-Q8HlPI5upt8hzR6lYwfwbRmCCGnVEwIKqo6k_hEMnFIKYJT--h7Hb8VJerUpdqp3y7VqUs1dZlVj5MKcv4vD_FkD8GA9fHkbgf_r_4HBfh_og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><source>Elsevier</source><creator>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J.</creator><creatorcontrib>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2024.105429</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>08 HYDROGEN ; Exhaust gas recirculation ; Fuel blending ; Hydrogen ; Soret effect ; Thermodiffusive instability</subject><ispartof>Proceedings of the Combustion Institute, 2024-01, Vol.40 (1-4), p.105429, Article 105429</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</cites><orcidid>0000-0002-1711-3963 ; 0000-0001-5656-0961 ; 0000-0002-7789-9742 ; 0000-0002-2970-4824 ; 0000000229704824 ; 0000000277899742 ; 0000000156560961 ; 0000000217113963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2441469$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howarth, T.L.</creatorcontrib><creatorcontrib>Day, M.S.</creatorcontrib><creatorcontrib>Pitsch, H.</creatorcontrib><creatorcontrib>Aspden, A.J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><title>Proceedings of the Combustion Institute</title><description>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</description><subject>08 HYDROGEN</subject><subject>Exhaust gas recirculation</subject><subject>Fuel blending</subject><subject>Hydrogen</subject><subject>Soret effect</subject><subject>Thermodiffusive instability</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcLE4k-JX4ubAAVW8pEpcytly7HXjKnEqO0Xl73EJZ067mp0ZzQ5Ct5QsKKHVw26xj4PxC0aYyEgpWH2GZnQpecEkEed5LwUppFjWl-gqpR0hXBJezlCzaSH2usPWO3dIfgj3GI6tPqQRb3XCEYyP5tDpMZ-wDhY3HQTrwxaDc2DGhDPegQ54H6H3R7C4_bZx2ELArtM9pGt04XSX4OZvztHny_Nm9VasP17fV0_rwrCyHAsn67ISjWNWc-C1LqVurKakMoLZsuKV0EYTyW2tG6DWiiVAJQVn-Q8HlPI5upt8hzR6lYwfwbRmCCGnVEwIKqo6k_hEMnFIKYJT--h7Hb8VJerUpdqp3y7VqUs1dZlVj5MKcv4vD_FkD8GA9fHkbgf_r_4HBfh_og</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Howarth, T.L.</creator><creator>Day, M.S.</creator><creator>Pitsch, H.</creator><creator>Aspden, A.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1711-3963</orcidid><orcidid>https://orcid.org/0000-0001-5656-0961</orcidid><orcidid>https://orcid.org/0000-0002-7789-9742</orcidid><orcidid>https://orcid.org/0000-0002-2970-4824</orcidid><orcidid>https://orcid.org/0000000229704824</orcidid><orcidid>https://orcid.org/0000000277899742</orcidid><orcidid>https://orcid.org/0000000156560961</orcidid><orcidid>https://orcid.org/0000000217113963</orcidid></search><sort><creationdate>20240101</creationdate><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><author>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>08 HYDROGEN</topic><topic>Exhaust gas recirculation</topic><topic>Fuel blending</topic><topic>Hydrogen</topic><topic>Soret effect</topic><topic>Thermodiffusive instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howarth, T.L.</creatorcontrib><creatorcontrib>Day, M.S.</creatorcontrib><creatorcontrib>Pitsch, H.</creatorcontrib><creatorcontrib>Aspden, A.J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howarth, T.L.</au><au>Day, M.S.</au><au>Pitsch, H.</au><au>Aspden, A.J.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>40</volume><issue>1-4</issue><spage>105429</spage><pages>105429-</pages><artnum>105429</artnum><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2024.105429</doi><orcidid>https://orcid.org/0000-0002-1711-3963</orcidid><orcidid>https://orcid.org/0000-0001-5656-0961</orcidid><orcidid>https://orcid.org/0000-0002-7789-9742</orcidid><orcidid>https://orcid.org/0000-0002-2970-4824</orcidid><orcidid>https://orcid.org/0000000229704824</orcidid><orcidid>https://orcid.org/0000000277899742</orcidid><orcidid>https://orcid.org/0000000156560961</orcidid><orcidid>https://orcid.org/0000000217113963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2024-01, Vol.40 (1-4), p.105429, Article 105429
issn 1540-7489
1873-2704
language eng
recordid cdi_osti_scitechconnect_2441469
source Elsevier
subjects 08 HYDROGEN
Exhaust gas recirculation
Fuel blending
Hydrogen
Soret effect
Thermodiffusive instability
title Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20diffusion,%20exhaust%20gas%20recirculation%20and%20blending%20effects%20on%20lean%20premixed%20hydrogen%20flames&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Howarth,%20T.L.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-01-01&rft.volume=40&rft.issue=1-4&rft.spage=105429&rft.pages=105429-&rft.artnum=105429&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2024.105429&rft_dat=%3Celsevier_osti_%3ES1540748924002372%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true