Loading…
Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames
Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with metha...
Saved in:
Published in: | Proceedings of the Combustion Institute 2024-01, Vol.40 (1-4), p.105429, Article 105429 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113 |
container_end_page | |
container_issue | 1-4 |
container_start_page | 105429 |
container_title | Proceedings of the Combustion Institute |
container_volume | 40 |
creator | Howarth, T.L. Day, M.S. Pitsch, H. Aspden, A.J. |
description | Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this. |
doi_str_mv | 10.1016/j.proci.2024.105429 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2441469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748924002372</els_id><sourcerecordid>S1540748924002372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcLE4k-JX4ubAAVW8pEpcytly7HXjKnEqO0Xl73EJZ067mp0ZzQ5Ct5QsKKHVw26xj4PxC0aYyEgpWH2GZnQpecEkEed5LwUppFjWl-gqpR0hXBJezlCzaSH2usPWO3dIfgj3GI6tPqQRb3XCEYyP5tDpMZ-wDhY3HQTrwxaDc2DGhDPegQ54H6H3R7C4_bZx2ELArtM9pGt04XSX4OZvztHny_Nm9VasP17fV0_rwrCyHAsn67ISjWNWc-C1LqVurKakMoLZsuKV0EYTyW2tG6DWiiVAJQVn-Q8HlPI5upt8hzR6lYwfwbRmCCGnVEwIKqo6k_hEMnFIKYJT--h7Hb8VJerUpdqp3y7VqUs1dZlVj5MKcv4vD_FkD8GA9fHkbgf_r_4HBfh_og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><source>Elsevier</source><creator>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J.</creator><creatorcontrib>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2024.105429</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>08 HYDROGEN ; Exhaust gas recirculation ; Fuel blending ; Hydrogen ; Soret effect ; Thermodiffusive instability</subject><ispartof>Proceedings of the Combustion Institute, 2024-01, Vol.40 (1-4), p.105429, Article 105429</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</cites><orcidid>0000-0002-1711-3963 ; 0000-0001-5656-0961 ; 0000-0002-7789-9742 ; 0000-0002-2970-4824 ; 0000000229704824 ; 0000000277899742 ; 0000000156560961 ; 0000000217113963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2441469$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Howarth, T.L.</creatorcontrib><creatorcontrib>Day, M.S.</creatorcontrib><creatorcontrib>Pitsch, H.</creatorcontrib><creatorcontrib>Aspden, A.J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><title>Proceedings of the Combustion Institute</title><description>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</description><subject>08 HYDROGEN</subject><subject>Exhaust gas recirculation</subject><subject>Fuel blending</subject><subject>Hydrogen</subject><subject>Soret effect</subject><subject>Thermodiffusive instability</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcLE4k-JX4ubAAVW8pEpcytly7HXjKnEqO0Xl73EJZ067mp0ZzQ5Ct5QsKKHVw26xj4PxC0aYyEgpWH2GZnQpecEkEed5LwUppFjWl-gqpR0hXBJezlCzaSH2usPWO3dIfgj3GI6tPqQRb3XCEYyP5tDpMZ-wDhY3HQTrwxaDc2DGhDPegQ54H6H3R7C4_bZx2ELArtM9pGt04XSX4OZvztHny_Nm9VasP17fV0_rwrCyHAsn67ISjWNWc-C1LqVurKakMoLZsuKV0EYTyW2tG6DWiiVAJQVn-Q8HlPI5upt8hzR6lYwfwbRmCCGnVEwIKqo6k_hEMnFIKYJT--h7Hb8VJerUpdqp3y7VqUs1dZlVj5MKcv4vD_FkD8GA9fHkbgf_r_4HBfh_og</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Howarth, T.L.</creator><creator>Day, M.S.</creator><creator>Pitsch, H.</creator><creator>Aspden, A.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1711-3963</orcidid><orcidid>https://orcid.org/0000-0001-5656-0961</orcidid><orcidid>https://orcid.org/0000-0002-7789-9742</orcidid><orcidid>https://orcid.org/0000-0002-2970-4824</orcidid><orcidid>https://orcid.org/0000000229704824</orcidid><orcidid>https://orcid.org/0000000277899742</orcidid><orcidid>https://orcid.org/0000000156560961</orcidid><orcidid>https://orcid.org/0000000217113963</orcidid></search><sort><creationdate>20240101</creationdate><title>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</title><author>Howarth, T.L. ; Day, M.S. ; Pitsch, H. ; Aspden, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>08 HYDROGEN</topic><topic>Exhaust gas recirculation</topic><topic>Fuel blending</topic><topic>Hydrogen</topic><topic>Soret effect</topic><topic>Thermodiffusive instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howarth, T.L.</creatorcontrib><creatorcontrib>Day, M.S.</creatorcontrib><creatorcontrib>Pitsch, H.</creatorcontrib><creatorcontrib>Aspden, A.J.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howarth, T.L.</au><au>Day, M.S.</au><au>Pitsch, H.</au><au>Aspden, A.J.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>40</volume><issue>1-4</issue><spage>105429</spage><pages>105429-</pages><artnum>105429</artnum><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>Thermodiffusively-unstable lean premixed hydrogen flames are investigated using two-dimensional direct numerical simulation employing finite-rate chemical kinetics. Three databases are generated focussing on the inclusion of the Soret effect, the recirculation of exhaust gas, and blending with methane. A simple rescaling of a classic thermal diffusion model is presented and shown to mimic multicomponent diffusion with very low computational cost and little-to-no loss in accuracy. It is also shown that a previously developed model for mean local flame speeds in lean premixed hydrogen flames [1] can still be used provided Soret effects are taken into account in one-dimensional calculations. The addition of exhaust gas to the unburned mixture is found to enhance thermodiffusive instability; the primary mechanism for this was shown to be the highly-efficient third-body nature of water, with the reduction of adiabatic flame temperature a second-order effect. Again, the existing mean local flame speed model proved sufficient. Finally, blending with methane was found to reduce the thermodiffusive response of the flame, more so than the existing model suggests, despite adjustment of the fuel Lewis number; an adapted model is presented to account for this.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2024.105429</doi><orcidid>https://orcid.org/0000-0002-1711-3963</orcidid><orcidid>https://orcid.org/0000-0001-5656-0961</orcidid><orcidid>https://orcid.org/0000-0002-7789-9742</orcidid><orcidid>https://orcid.org/0000-0002-2970-4824</orcidid><orcidid>https://orcid.org/0000000229704824</orcidid><orcidid>https://orcid.org/0000000277899742</orcidid><orcidid>https://orcid.org/0000000156560961</orcidid><orcidid>https://orcid.org/0000000217113963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7489 |
ispartof | Proceedings of the Combustion Institute, 2024-01, Vol.40 (1-4), p.105429, Article 105429 |
issn | 1540-7489 1873-2704 |
language | eng |
recordid | cdi_osti_scitechconnect_2441469 |
source | Elsevier |
subjects | 08 HYDROGEN Exhaust gas recirculation Fuel blending Hydrogen Soret effect Thermodiffusive instability |
title | Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20diffusion,%20exhaust%20gas%20recirculation%20and%20blending%20effects%20on%20lean%20premixed%20hydrogen%20flames&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Howarth,%20T.L.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-01-01&rft.volume=40&rft.issue=1-4&rft.spage=105429&rft.pages=105429-&rft.artnum=105429&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2024.105429&rft_dat=%3Celsevier_osti_%3ES1540748924002372%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-f79564bf2da3e39a57abda106c42d56364aca073d9abe1dd48ee67432035fe113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |