Loading…

High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation

Hydrocarbon-based electrodes for proton-exchange membrane fuel cells face challenges in closing the performance gap with electrodes based on perfluorosulfonic acid ionomers, particularly under low humidity conditions. Alongside increased oxygen transport resistance and higher kinetic-induced overpot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2024-12, Vol.624, p.235537, Article 235537
Main Authors: Liepold, Hannes, Bird, Ashley, Heizmann, Philipp A., Fadlullah, Hassan, Nguyen, Hien, Klose, Carolin, Holdcroft, Steven, Kusoglu, Ahmet, Vierrath, Severin, Münchinger, Andreas
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-649f604375ac292b7f89597141467072af12609a197335b23777fe2364490ea3
container_end_page
container_issue
container_start_page 235537
container_title Journal of power sources
container_volume 624
creator Liepold, Hannes
Bird, Ashley
Heizmann, Philipp A.
Fadlullah, Hassan
Nguyen, Hien
Klose, Carolin
Holdcroft, Steven
Kusoglu, Ahmet
Vierrath, Severin
Münchinger, Andreas
description Hydrocarbon-based electrodes for proton-exchange membrane fuel cells face challenges in closing the performance gap with electrodes based on perfluorosulfonic acid ionomers, particularly under low humidity conditions. Alongside increased oxygen transport resistance and higher kinetic-induced overpotentials, the protonic resistance of these fluorine-free electrodes is the primary hurdle to improved performance. This study systematically investigates the origin and impact of the cathode protonic resistance on fuel cell performance, utilizing sulfonated phenylated polyphenylenes as hydrocarbon ionomers. Electrochemical characterization at low relative humidity (≤50 %) reveal a high protonic resistance arising from both lower conductivity of the hydrocarbon thin film compared to the bulk membrane and increased cathode tortuosity at a gas transport-optimized ionomer to carbon (I/C) ratio of 0.2. The poor protonic resistance at low relative humidities leads to a non-homogeneous current distribution across the thickness of the cathode electrode, resulting in lower catalyst utilization. To address this issue, reducing the thickness of the cathode CL while maintaining a constant Pt loading (i.e., increasing the Pt on carbon ratio) significantly reduces protonic resistance. This improvement compensates for the kinetic disadvantages of highly loaded carbon particles and results in a considerable performance increase by 40 % at 0.75 V under low relative humidities. [Display omitted] •First thin film (22 nm) measurements on sulfonated phenylated polyphenylenes.•Evidence on HC ionomer distribution in the CL: Tortuosity, possible pore intrusion.•Barely any catalyst contribution near the GDL to ORR due to protonic resistance.•Thin CLs as remediation: 40 % increase in current density at 0.75 V and 50 % RH.
doi_str_mv 10.1016/j.jpowsour.2024.235537
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2449631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775324014897</els_id><sourcerecordid>S0378775324014897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-649f604375ac292b7f89597141467072af12609a197335b23777fe2364490ea3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRbMACSj8AhqxboofiU1YgarykIrKgr3lOk4zVWpXdkrVb-CncQmsWY1mdO-dmZNl15RMKKHidj1Zb_0--l2YMMKKCeNlyeVJdk64vMulLPlZdhHjmhBCqSTn2dcLrlrYBt97hwaCjRh77YwF30B7qIM3Oiy9y5c62hqM7ltf2wjo4H32Bs3OdmBs10XYudoG6Pwe2t0Ga-wPYLxLFb2L97AIuEI3BtxsO0wxaToG7WrYJMXqp7_MThvdRXv1W0fZx9PsY_qSzxfPr9PHeW6YKPpcFFUjSMFlqQ2r2FI2d1VZSVrQQkgimW4oE6TStJKcl0vGpZSNZVwURUWs5qPsZoj1sUcVDfbWtOlUZ02vWBIJTpNIDCITfIzBNmobcKPDQVGijqjVWv2hVkfUakCdjA-D0aYPPtGG4wabgNYYjgtqj_9FfAO14Y55</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation</title><source>ScienceDirect Journals</source><creator>Liepold, Hannes ; Bird, Ashley ; Heizmann, Philipp A. ; Fadlullah, Hassan ; Nguyen, Hien ; Klose, Carolin ; Holdcroft, Steven ; Kusoglu, Ahmet ; Vierrath, Severin ; Münchinger, Andreas</creator><creatorcontrib>Liepold, Hannes ; Bird, Ashley ; Heizmann, Philipp A. ; Fadlullah, Hassan ; Nguyen, Hien ; Klose, Carolin ; Holdcroft, Steven ; Kusoglu, Ahmet ; Vierrath, Severin ; Münchinger, Andreas ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Hydrocarbon-based electrodes for proton-exchange membrane fuel cells face challenges in closing the performance gap with electrodes based on perfluorosulfonic acid ionomers, particularly under low humidity conditions. Alongside increased oxygen transport resistance and higher kinetic-induced overpotentials, the protonic resistance of these fluorine-free electrodes is the primary hurdle to improved performance. This study systematically investigates the origin and impact of the cathode protonic resistance on fuel cell performance, utilizing sulfonated phenylated polyphenylenes as hydrocarbon ionomers. Electrochemical characterization at low relative humidity (≤50 %) reveal a high protonic resistance arising from both lower conductivity of the hydrocarbon thin film compared to the bulk membrane and increased cathode tortuosity at a gas transport-optimized ionomer to carbon (I/C) ratio of 0.2. The poor protonic resistance at low relative humidities leads to a non-homogeneous current distribution across the thickness of the cathode electrode, resulting in lower catalyst utilization. To address this issue, reducing the thickness of the cathode CL while maintaining a constant Pt loading (i.e., increasing the Pt on carbon ratio) significantly reduces protonic resistance. This improvement compensates for the kinetic disadvantages of highly loaded carbon particles and results in a considerable performance increase by 40 % at 0.75 V under low relative humidities. [Display omitted] •First thin film (22 nm) measurements on sulfonated phenylated polyphenylenes.•Evidence on HC ionomer distribution in the CL: Tortuosity, possible pore intrusion.•Barely any catalyst contribution near the GDL to ORR due to protonic resistance.•Thin CLs as remediation: 40 % increase in current density at 0.75 V and 50 % RH.</description><identifier>ISSN: 0378-7753</identifier><identifier>DOI: 10.1016/j.jpowsour.2024.235537</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><ispartof>Journal of power sources, 2024-12, Vol.624, p.235537, Article 235537</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-649f604375ac292b7f89597141467072af12609a197335b23777fe2364490ea3</cites><orcidid>0000-0002-1653-1047 ; 0000-0002-8477-5465 ; 0000-0003-3683-0228 ; 0000-0002-0337-7837 ; 0000000336830228 ; 0000000284775465 ; 0000000203377837 ; 0000000216531047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2449631$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liepold, Hannes</creatorcontrib><creatorcontrib>Bird, Ashley</creatorcontrib><creatorcontrib>Heizmann, Philipp A.</creatorcontrib><creatorcontrib>Fadlullah, Hassan</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><creatorcontrib>Klose, Carolin</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Kusoglu, Ahmet</creatorcontrib><creatorcontrib>Vierrath, Severin</creatorcontrib><creatorcontrib>Münchinger, Andreas</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation</title><title>Journal of power sources</title><description>Hydrocarbon-based electrodes for proton-exchange membrane fuel cells face challenges in closing the performance gap with electrodes based on perfluorosulfonic acid ionomers, particularly under low humidity conditions. Alongside increased oxygen transport resistance and higher kinetic-induced overpotentials, the protonic resistance of these fluorine-free electrodes is the primary hurdle to improved performance. This study systematically investigates the origin and impact of the cathode protonic resistance on fuel cell performance, utilizing sulfonated phenylated polyphenylenes as hydrocarbon ionomers. Electrochemical characterization at low relative humidity (≤50 %) reveal a high protonic resistance arising from both lower conductivity of the hydrocarbon thin film compared to the bulk membrane and increased cathode tortuosity at a gas transport-optimized ionomer to carbon (I/C) ratio of 0.2. The poor protonic resistance at low relative humidities leads to a non-homogeneous current distribution across the thickness of the cathode electrode, resulting in lower catalyst utilization. To address this issue, reducing the thickness of the cathode CL while maintaining a constant Pt loading (i.e., increasing the Pt on carbon ratio) significantly reduces protonic resistance. This improvement compensates for the kinetic disadvantages of highly loaded carbon particles and results in a considerable performance increase by 40 % at 0.75 V under low relative humidities. [Display omitted] •First thin film (22 nm) measurements on sulfonated phenylated polyphenylenes.•Evidence on HC ionomer distribution in the CL: Tortuosity, possible pore intrusion.•Barely any catalyst contribution near the GDL to ORR due to protonic resistance.•Thin CLs as remediation: 40 % increase in current density at 0.75 V and 50 % RH.</description><issn>0378-7753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRbMACSj8AhqxboofiU1YgarykIrKgr3lOk4zVWpXdkrVb-CncQmsWY1mdO-dmZNl15RMKKHidj1Zb_0--l2YMMKKCeNlyeVJdk64vMulLPlZdhHjmhBCqSTn2dcLrlrYBt97hwaCjRh77YwF30B7qIM3Oiy9y5c62hqM7ltf2wjo4H32Bs3OdmBs10XYudoG6Pwe2t0Ga-wPYLxLFb2L97AIuEI3BtxsO0wxaToG7WrYJMXqp7_MThvdRXv1W0fZx9PsY_qSzxfPr9PHeW6YKPpcFFUjSMFlqQ2r2FI2d1VZSVrQQkgimW4oE6TStJKcl0vGpZSNZVwURUWs5qPsZoj1sUcVDfbWtOlUZ02vWBIJTpNIDCITfIzBNmobcKPDQVGijqjVWv2hVkfUakCdjA-D0aYPPtGG4wabgNYYjgtqj_9FfAO14Y55</recordid><startdate>20241230</startdate><enddate>20241230</enddate><creator>Liepold, Hannes</creator><creator>Bird, Ashley</creator><creator>Heizmann, Philipp A.</creator><creator>Fadlullah, Hassan</creator><creator>Nguyen, Hien</creator><creator>Klose, Carolin</creator><creator>Holdcroft, Steven</creator><creator>Kusoglu, Ahmet</creator><creator>Vierrath, Severin</creator><creator>Münchinger, Andreas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-8477-5465</orcidid><orcidid>https://orcid.org/0000-0003-3683-0228</orcidid><orcidid>https://orcid.org/0000-0002-0337-7837</orcidid><orcidid>https://orcid.org/0000000336830228</orcidid><orcidid>https://orcid.org/0000000284775465</orcidid><orcidid>https://orcid.org/0000000203377837</orcidid><orcidid>https://orcid.org/0000000216531047</orcidid></search><sort><creationdate>20241230</creationdate><title>High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation</title><author>Liepold, Hannes ; Bird, Ashley ; Heizmann, Philipp A. ; Fadlullah, Hassan ; Nguyen, Hien ; Klose, Carolin ; Holdcroft, Steven ; Kusoglu, Ahmet ; Vierrath, Severin ; Münchinger, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-649f604375ac292b7f89597141467072af12609a197335b23777fe2364490ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liepold, Hannes</creatorcontrib><creatorcontrib>Bird, Ashley</creatorcontrib><creatorcontrib>Heizmann, Philipp A.</creatorcontrib><creatorcontrib>Fadlullah, Hassan</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><creatorcontrib>Klose, Carolin</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Kusoglu, Ahmet</creatorcontrib><creatorcontrib>Vierrath, Severin</creatorcontrib><creatorcontrib>Münchinger, Andreas</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liepold, Hannes</au><au>Bird, Ashley</au><au>Heizmann, Philipp A.</au><au>Fadlullah, Hassan</au><au>Nguyen, Hien</au><au>Klose, Carolin</au><au>Holdcroft, Steven</au><au>Kusoglu, Ahmet</au><au>Vierrath, Severin</au><au>Münchinger, Andreas</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation</atitle><jtitle>Journal of power sources</jtitle><date>2024-12-30</date><risdate>2024</risdate><volume>624</volume><spage>235537</spage><pages>235537-</pages><artnum>235537</artnum><issn>0378-7753</issn><abstract>Hydrocarbon-based electrodes for proton-exchange membrane fuel cells face challenges in closing the performance gap with electrodes based on perfluorosulfonic acid ionomers, particularly under low humidity conditions. Alongside increased oxygen transport resistance and higher kinetic-induced overpotentials, the protonic resistance of these fluorine-free electrodes is the primary hurdle to improved performance. This study systematically investigates the origin and impact of the cathode protonic resistance on fuel cell performance, utilizing sulfonated phenylated polyphenylenes as hydrocarbon ionomers. Electrochemical characterization at low relative humidity (≤50 %) reveal a high protonic resistance arising from both lower conductivity of the hydrocarbon thin film compared to the bulk membrane and increased cathode tortuosity at a gas transport-optimized ionomer to carbon (I/C) ratio of 0.2. The poor protonic resistance at low relative humidities leads to a non-homogeneous current distribution across the thickness of the cathode electrode, resulting in lower catalyst utilization. To address this issue, reducing the thickness of the cathode CL while maintaining a constant Pt loading (i.e., increasing the Pt on carbon ratio) significantly reduces protonic resistance. This improvement compensates for the kinetic disadvantages of highly loaded carbon particles and results in a considerable performance increase by 40 % at 0.75 V under low relative humidities. [Display omitted] •First thin film (22 nm) measurements on sulfonated phenylated polyphenylenes.•Evidence on HC ionomer distribution in the CL: Tortuosity, possible pore intrusion.•Barely any catalyst contribution near the GDL to ORR due to protonic resistance.•Thin CLs as remediation: 40 % increase in current density at 0.75 V and 50 % RH.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2024.235537</doi><orcidid>https://orcid.org/0000-0002-1653-1047</orcidid><orcidid>https://orcid.org/0000-0002-8477-5465</orcidid><orcidid>https://orcid.org/0000-0003-3683-0228</orcidid><orcidid>https://orcid.org/0000-0002-0337-7837</orcidid><orcidid>https://orcid.org/0000000336830228</orcidid><orcidid>https://orcid.org/0000000284775465</orcidid><orcidid>https://orcid.org/0000000203377837</orcidid><orcidid>https://orcid.org/0000000216531047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2024-12, Vol.624, p.235537, Article 235537
issn 0378-7753
language eng
recordid cdi_osti_scitechconnect_2449631
source ScienceDirect Journals
title High protonic resistance of hydrocarbon-based cathodes in PEM fuel cells under low humidity conditions: Origin, implication, and mitigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20protonic%20resistance%20of%20hydrocarbon-based%20cathodes%20in%20PEM%20fuel%20cells%20under%20low%20humidity%20conditions:%20Origin,%20implication,%20and%20mitigation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Liepold,%20Hannes&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-12-30&rft.volume=624&rft.spage=235537&rft.pages=235537-&rft.artnum=235537&rft.issn=0378-7753&rft_id=info:doi/10.1016/j.jpowsour.2024.235537&rft_dat=%3Celsevier_osti_%3ES0378775324014897%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-649f604375ac292b7f89597141467072af12609a197335b23777fe2364490ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true