Loading…

The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning

A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-12, Vol.187 (108491), p.108491, Article 108491
Main Authors: Larson, Richard A., Nazmus Saquib, Mohammad, Li, Jiang, Favaloro, Anthony J., Sommer, Drew E., Denos, Benjamin R., Byron Pipes, R., Kravchenko, Sergii G., Kravchenko, Oleksandr G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c222t-29c27f4bf39f557ed7a155bdb470a6a7264bdc6c639fd4e65679ac2f3cd97a523
container_end_page
container_issue 108491
container_start_page 108491
container_title Composites. Part A, Applied science and manufacturing
container_volume 187
creator Larson, Richard A.
Nazmus Saquib, Mohammad
Li, Jiang
Favaloro, Anthony J.
Sommer, Drew E.
Denos, Benjamin R.
Byron Pipes, R.
Kravchenko, Sergii G.
Kravchenko, Oleksandr G.
description A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields from residual stresses simulated in PPMC plates were used as the input to the DCNN. A training dataset included PPMC plates with various degrees of global fiber alignment, based on the information obtained from high-fidelity flow simulation of a pin bracket. The MR-AI model was then deployed to analyze FOD in the 3D pin bracket by conducting thermo-elastic residual stress analysis. Initially, the MR-AI model was established entirely on the synthetic simulation data. Then, a μCT scan of a physically molded pin bracket was used to create a finite element model that provided data for additional validation of the DCNN model. For the μCT scan finite element pin bracket the MR-AI model predicted the distribution of fiber orientation tensor components with MAE of 0.10 indicating a global prediction error of 10 %. For the flow simulated pin bracket, the MR-AI model predicted the distribution of fiber orientation tensor components with a global prediction error of 11 %. The MR-AI model showed the ability to predict regions of varying alignment in the base and flange of the pin bracket. The proposed MR-AI methodology allows for rapid prediction of FOD in geometrically complex parts and offers a promising path to detecting unique fiber orientation states in molded components.
doi_str_mv 10.1016/j.compositesa.2024.108491
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2472748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X24004883</els_id><sourcerecordid>S1359835X24004883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-29c27f4bf39f557ed7a155bdb470a6a7264bdc6c639fd4e65679ac2f3cd97a523</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhH0AiVL4D4Z7SuI83BxRxUuqxKVI3CxnvW5dUjuy3Uoc-O84hANHTivtzO5oPkJuinxR5EVzt1-AOwwumIhBLljOqrRfVm1xRmZFWbfZsqzfL8hlCPs8z8uyLWbka7NDegxInabKbE2UPY07j1JR7Tz1CM6G6I8QjbOjqXeQLNp06KnzBm2UP5KxVNIx32MI4-LgeoWKDknovIQPjPRkJFWIA-1Remvs9oqca9kHvP6dc_L2-LBZPWfr16eX1f06A8ZYzFgLjOuq02Wr65qj4rKo6051Fc9lIzlrqk5BA03SVYVN3fBWAtMlqJbLmpVzcjv9dSEaESARgl1qZhGiYBVnvFomUzuZwLsQPGoxeHOQ_lMUuRgBi734A1iMgMUEON2upltMLU4G_RiCFlAZP2YoZ_7x5RvIgI9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning</title><source>ScienceDirect Journals</source><creator>Larson, Richard A. ; Nazmus Saquib, Mohammad ; Li, Jiang ; Favaloro, Anthony J. ; Sommer, Drew E. ; Denos, Benjamin R. ; Byron Pipes, R. ; Kravchenko, Sergii G. ; Kravchenko, Oleksandr G.</creator><creatorcontrib>Larson, Richard A. ; Nazmus Saquib, Mohammad ; Li, Jiang ; Favaloro, Anthony J. ; Sommer, Drew E. ; Denos, Benjamin R. ; Byron Pipes, R. ; Kravchenko, Sergii G. ; Kravchenko, Oleksandr G. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields from residual stresses simulated in PPMC plates were used as the input to the DCNN. A training dataset included PPMC plates with various degrees of global fiber alignment, based on the information obtained from high-fidelity flow simulation of a pin bracket. The MR-AI model was then deployed to analyze FOD in the 3D pin bracket by conducting thermo-elastic residual stress analysis. Initially, the MR-AI model was established entirely on the synthetic simulation data. Then, a μCT scan of a physically molded pin bracket was used to create a finite element model that provided data for additional validation of the DCNN model. For the μCT scan finite element pin bracket the MR-AI model predicted the distribution of fiber orientation tensor components with MAE of 0.10 indicating a global prediction error of 10 %. For the flow simulated pin bracket, the MR-AI model predicted the distribution of fiber orientation tensor components with a global prediction error of 11 %. The MR-AI model showed the ability to predict regions of varying alignment in the base and flange of the pin bracket. The proposed MR-AI methodology allows for rapid prediction of FOD in geometrically complex parts and offers a promising path to detecting unique fiber orientation states in molded components.</description><identifier>ISSN: 1359-835X</identifier><identifier>DOI: 10.1016/j.compositesa.2024.108491</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Fiber Orientation ; Non-destructive Inspection ; Prepreg Platelets</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2024-12, Vol.187 (108491), p.108491, Article 108491</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-29c27f4bf39f557ed7a155bdb470a6a7264bdc6c639fd4e65679ac2f3cd97a523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2472748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Larson, Richard A.</creatorcontrib><creatorcontrib>Nazmus Saquib, Mohammad</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Favaloro, Anthony J.</creatorcontrib><creatorcontrib>Sommer, Drew E.</creatorcontrib><creatorcontrib>Denos, Benjamin R.</creatorcontrib><creatorcontrib>Byron Pipes, R.</creatorcontrib><creatorcontrib>Kravchenko, Sergii G.</creatorcontrib><creatorcontrib>Kravchenko, Oleksandr G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning</title><title>Composites. Part A, Applied science and manufacturing</title><description>A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields from residual stresses simulated in PPMC plates were used as the input to the DCNN. A training dataset included PPMC plates with various degrees of global fiber alignment, based on the information obtained from high-fidelity flow simulation of a pin bracket. The MR-AI model was then deployed to analyze FOD in the 3D pin bracket by conducting thermo-elastic residual stress analysis. Initially, the MR-AI model was established entirely on the synthetic simulation data. Then, a μCT scan of a physically molded pin bracket was used to create a finite element model that provided data for additional validation of the DCNN model. For the μCT scan finite element pin bracket the MR-AI model predicted the distribution of fiber orientation tensor components with MAE of 0.10 indicating a global prediction error of 10 %. For the flow simulated pin bracket, the MR-AI model predicted the distribution of fiber orientation tensor components with a global prediction error of 11 %. The MR-AI model showed the ability to predict regions of varying alignment in the base and flange of the pin bracket. The proposed MR-AI methodology allows for rapid prediction of FOD in geometrically complex parts and offers a promising path to detecting unique fiber orientation states in molded components.</description><subject>Artificial Intelligence</subject><subject>Fiber Orientation</subject><subject>Non-destructive Inspection</subject><subject>Prepreg Platelets</subject><issn>1359-835X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhH0AiVL4D4Z7SuI83BxRxUuqxKVI3CxnvW5dUjuy3Uoc-O84hANHTivtzO5oPkJuinxR5EVzt1-AOwwumIhBLljOqrRfVm1xRmZFWbfZsqzfL8hlCPs8z8uyLWbka7NDegxInabKbE2UPY07j1JR7Tz1CM6G6I8QjbOjqXeQLNp06KnzBm2UP5KxVNIx32MI4-LgeoWKDknovIQPjPRkJFWIA-1Remvs9oqca9kHvP6dc_L2-LBZPWfr16eX1f06A8ZYzFgLjOuq02Wr65qj4rKo6051Fc9lIzlrqk5BA03SVYVN3fBWAtMlqJbLmpVzcjv9dSEaESARgl1qZhGiYBVnvFomUzuZwLsQPGoxeHOQ_lMUuRgBi734A1iMgMUEON2upltMLU4G_RiCFlAZP2YoZ_7x5RvIgI9s</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Larson, Richard A.</creator><creator>Nazmus Saquib, Mohammad</creator><creator>Li, Jiang</creator><creator>Favaloro, Anthony J.</creator><creator>Sommer, Drew E.</creator><creator>Denos, Benjamin R.</creator><creator>Byron Pipes, R.</creator><creator>Kravchenko, Sergii G.</creator><creator>Kravchenko, Oleksandr G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20241201</creationdate><title>The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning</title><author>Larson, Richard A. ; Nazmus Saquib, Mohammad ; Li, Jiang ; Favaloro, Anthony J. ; Sommer, Drew E. ; Denos, Benjamin R. ; Byron Pipes, R. ; Kravchenko, Sergii G. ; Kravchenko, Oleksandr G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-29c27f4bf39f557ed7a155bdb470a6a7264bdc6c639fd4e65679ac2f3cd97a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Fiber Orientation</topic><topic>Non-destructive Inspection</topic><topic>Prepreg Platelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larson, Richard A.</creatorcontrib><creatorcontrib>Nazmus Saquib, Mohammad</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Favaloro, Anthony J.</creatorcontrib><creatorcontrib>Sommer, Drew E.</creatorcontrib><creatorcontrib>Denos, Benjamin R.</creatorcontrib><creatorcontrib>Byron Pipes, R.</creatorcontrib><creatorcontrib>Kravchenko, Sergii G.</creatorcontrib><creatorcontrib>Kravchenko, Oleksandr G.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larson, Richard A.</au><au>Nazmus Saquib, Mohammad</au><au>Li, Jiang</au><au>Favaloro, Anthony J.</au><au>Sommer, Drew E.</au><au>Denos, Benjamin R.</au><au>Byron Pipes, R.</au><au>Kravchenko, Sergii G.</au><au>Kravchenko, Oleksandr G.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>187</volume><issue>108491</issue><spage>108491</spage><pages>108491-</pages><artnum>108491</artnum><issn>1359-835X</issn><abstract>A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields from residual stresses simulated in PPMC plates were used as the input to the DCNN. A training dataset included PPMC plates with various degrees of global fiber alignment, based on the information obtained from high-fidelity flow simulation of a pin bracket. The MR-AI model was then deployed to analyze FOD in the 3D pin bracket by conducting thermo-elastic residual stress analysis. Initially, the MR-AI model was established entirely on the synthetic simulation data. Then, a μCT scan of a physically molded pin bracket was used to create a finite element model that provided data for additional validation of the DCNN model. For the μCT scan finite element pin bracket the MR-AI model predicted the distribution of fiber orientation tensor components with MAE of 0.10 indicating a global prediction error of 10 %. For the flow simulated pin bracket, the MR-AI model predicted the distribution of fiber orientation tensor components with a global prediction error of 11 %. The MR-AI model showed the ability to predict regions of varying alignment in the base and flange of the pin bracket. The proposed MR-AI methodology allows for rapid prediction of FOD in geometrically complex parts and offers a promising path to detecting unique fiber orientation states in molded components.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2024.108491</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2024-12, Vol.187 (108491), p.108491, Article 108491
issn 1359-835X
language eng
recordid cdi_osti_scitechconnect_2472748
source ScienceDirect Journals
subjects Artificial Intelligence
Fiber Orientation
Non-destructive Inspection
Prepreg Platelets
title The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20digital%20thread%20for%20reconstruction%20of%20local%20fiber%20orientation%20in%20a%20compression%20molded%20pin%20bracket%20via%20deep%20learning&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Larson,%20Richard%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2024-12-01&rft.volume=187&rft.issue=108491&rft.spage=108491&rft.pages=108491-&rft.artnum=108491&rft.issn=1359-835X&rft_id=info:doi/10.1016/j.compositesa.2024.108491&rft_dat=%3Celsevier_osti_%3ES1359835X24004883%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-29c27f4bf39f557ed7a155bdb470a6a7264bdc6c639fd4e65679ac2f3cd97a523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true