Loading…
Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C
Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of elec...
Saved in:
Published in: | Energy & environmental science 2024-11, Vol.17 (22), p.8866-8873 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3 |
container_end_page | 8873 |
container_issue | 22 |
container_start_page | 8866 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Xu, Wenhan Yang, Fei Zhao, Guodong Zhang, Shixian Rui, Guanchun Zhao, Muchen Liu, Lingling Chen, Long-Qing Wang, Qing |
description | Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (
i.e.
, Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm
−3
with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.
The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C. |
doi_str_mv | 10.1039/d4ee03705g |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2477139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126899104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</originalsourceid><addsrcrecordid>eNpFkc9Og0AQxonRxFq9eDfZ6M0EnQWWhaOptZo08aCeyTIMsA0F3KXGvpXP4JO5Ff-cZjLzy-T7vvG8Uw5XHML0uoiIIJQgqj1vwqWIfCEh3v_t4zQ49I6sXQHEAch04tETNaVfk2p0W7G-a7ZrMqzQ1BAORiOj91rnethtN81gVK2rmqHqFbrhGzFqyVRbZofOqIpYT6bszFq1SEwNLBDAPj9mx95BqRpLJz916r3czZ9n9_7ycfEwu1n6GITh4CMkTnwQpcglL4XkCBIKEphIoaIcY1BQqhzLHIokpqIkipzjRBQYiyLAcOqdj3c7O-jMOomENXZt68xkQSQlD1MHXYxQb7rXDdkhW3Ub0zpdWciDOElTDpGjLkcKTWetoTLrjV4rs804ZLuss9toPv_OeuHgsxE2Fv-4_1-EX8DkfL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126899104</pqid></control><display><type>article</type><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><source>Royal Society of Chemistry</source><creator>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</creator><creatorcontrib>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</creatorcontrib><description>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (
i.e.
, Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm
−3
with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.
The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee03705g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anderson localization ; Charge efficiency ; Conduction ; Copolymers ; Dielectrics ; Discharge ; Displays ; Electric power ; Electric power systems ; Electrical conduction ; Energy charge ; Energy storage ; High temperature ; Localization ; Polymers ; Self healing materials</subject><ispartof>Energy & environmental science, 2024-11, Vol.17 (22), p.8866-8873</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</cites><orcidid>0000-0002-4347-2601 ; 0000-0002-5968-3235 ; 0000-0003-2410-4560 ; 0000000259683235 ; 0000000243472601 ; 0000000324104560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2477139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Zhao, Muchen</creatorcontrib><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><title>Energy & environmental science</title><description>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (
i.e.
, Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm
−3
with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.
The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</description><subject>Anderson localization</subject><subject>Charge efficiency</subject><subject>Conduction</subject><subject>Copolymers</subject><subject>Dielectrics</subject><subject>Discharge</subject><subject>Displays</subject><subject>Electric power</subject><subject>Electric power systems</subject><subject>Electrical conduction</subject><subject>Energy charge</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Localization</subject><subject>Polymers</subject><subject>Self healing materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc9Og0AQxonRxFq9eDfZ6M0EnQWWhaOptZo08aCeyTIMsA0F3KXGvpXP4JO5Ff-cZjLzy-T7vvG8Uw5XHML0uoiIIJQgqj1vwqWIfCEh3v_t4zQ49I6sXQHEAch04tETNaVfk2p0W7G-a7ZrMqzQ1BAORiOj91rnethtN81gVK2rmqHqFbrhGzFqyVRbZofOqIpYT6bszFq1SEwNLBDAPj9mx95BqRpLJz916r3czZ9n9_7ycfEwu1n6GITh4CMkTnwQpcglL4XkCBIKEphIoaIcY1BQqhzLHIokpqIkipzjRBQYiyLAcOqdj3c7O-jMOomENXZt68xkQSQlD1MHXYxQb7rXDdkhW3Ub0zpdWciDOElTDpGjLkcKTWetoTLrjV4rs804ZLuss9toPv_OeuHgsxE2Fv-4_1-EX8DkfL0</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Xu, Wenhan</creator><creator>Yang, Fei</creator><creator>Zhao, Guodong</creator><creator>Zhang, Shixian</creator><creator>Rui, Guanchun</creator><creator>Zhao, Muchen</creator><creator>Liu, Lingling</creator><creator>Chen, Long-Qing</creator><creator>Wang, Qing</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><orcidid>https://orcid.org/0000-0002-5968-3235</orcidid><orcidid>https://orcid.org/0000-0003-2410-4560</orcidid><orcidid>https://orcid.org/0000000259683235</orcidid><orcidid>https://orcid.org/0000000243472601</orcidid><orcidid>https://orcid.org/0000000324104560</orcidid></search><sort><creationdate>20241112</creationdate><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><author>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anderson localization</topic><topic>Charge efficiency</topic><topic>Conduction</topic><topic>Copolymers</topic><topic>Dielectrics</topic><topic>Discharge</topic><topic>Displays</topic><topic>Electric power</topic><topic>Electric power systems</topic><topic>Electrical conduction</topic><topic>Energy charge</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Localization</topic><topic>Polymers</topic><topic>Self healing materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Zhao, Muchen</creatorcontrib><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenhan</au><au>Yang, Fei</au><au>Zhao, Guodong</au><au>Zhang, Shixian</au><au>Rui, Guanchun</au><au>Zhao, Muchen</au><au>Liu, Lingling</au><au>Chen, Long-Qing</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</atitle><jtitle>Energy & environmental science</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>17</volume><issue>22</issue><spage>8866</spage><epage>8873</epage><pages>8866-8873</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (
i.e.
, Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm
−3
with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.
The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee03705g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><orcidid>https://orcid.org/0000-0002-5968-3235</orcidid><orcidid>https://orcid.org/0000-0003-2410-4560</orcidid><orcidid>https://orcid.org/0000000259683235</orcidid><orcidid>https://orcid.org/0000000243472601</orcidid><orcidid>https://orcid.org/0000000324104560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-11, Vol.17 (22), p.8866-8873 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_2477139 |
source | Royal Society of Chemistry |
subjects | Anderson localization Charge efficiency Conduction Copolymers Dielectrics Discharge Displays Electric power Electric power systems Electrical conduction Energy charge Energy storage High temperature Localization Polymers Self healing materials |
title | Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20polymer%20dielectric%20exhibiting%20ultrahigh%20capacitive%20energy%20storage%20performance%20at%20250%20%C2%B0C&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Wenhan&rft.date=2024-11-12&rft.volume=17&rft.issue=22&rft.spage=8866&rft.epage=8873&rft.pages=8866-8873&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee03705g&rft_dat=%3Cproquest_osti_%3E3126899104%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126899104&rft_id=info:pmid/&rfr_iscdi=true |