Loading…

Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C

Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of elec...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2024-11, Vol.17 (22), p.8866-8873
Main Authors: Xu, Wenhan, Yang, Fei, Zhao, Guodong, Zhang, Shixian, Rui, Guanchun, Zhao, Muchen, Liu, Lingling, Chen, Long-Qing, Wang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3
container_end_page 8873
container_issue 22
container_start_page 8866
container_title Energy & environmental science
container_volume 17
creator Xu, Wenhan
Yang, Fei
Zhao, Guodong
Zhang, Shixian
Rui, Guanchun
Zhao, Muchen
Liu, Lingling
Chen, Long-Qing
Wang, Qing
description Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization ( i.e. , Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm −3 with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics. The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.
doi_str_mv 10.1039/d4ee03705g
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2477139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126899104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</originalsourceid><addsrcrecordid>eNpFkc9Og0AQxonRxFq9eDfZ6M0EnQWWhaOptZo08aCeyTIMsA0F3KXGvpXP4JO5Ff-cZjLzy-T7vvG8Uw5XHML0uoiIIJQgqj1vwqWIfCEh3v_t4zQ49I6sXQHEAch04tETNaVfk2p0W7G-a7ZrMqzQ1BAORiOj91rnethtN81gVK2rmqHqFbrhGzFqyVRbZofOqIpYT6bszFq1SEwNLBDAPj9mx95BqRpLJz916r3czZ9n9_7ycfEwu1n6GITh4CMkTnwQpcglL4XkCBIKEphIoaIcY1BQqhzLHIokpqIkipzjRBQYiyLAcOqdj3c7O-jMOomENXZt68xkQSQlD1MHXYxQb7rXDdkhW3Ub0zpdWciDOElTDpGjLkcKTWetoTLrjV4rs804ZLuss9toPv_OeuHgsxE2Fv-4_1-EX8DkfL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126899104</pqid></control><display><type>article</type><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><source>Royal Society of Chemistry</source><creator>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</creator><creatorcontrib>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</creatorcontrib><description>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization ( i.e. , Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm −3 with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics. The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee03705g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anderson localization ; Charge efficiency ; Conduction ; Copolymers ; Dielectrics ; Discharge ; Displays ; Electric power ; Electric power systems ; Electrical conduction ; Energy charge ; Energy storage ; High temperature ; Localization ; Polymers ; Self healing materials</subject><ispartof>Energy &amp; environmental science, 2024-11, Vol.17 (22), p.8866-8873</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</cites><orcidid>0000-0002-4347-2601 ; 0000-0002-5968-3235 ; 0000-0003-2410-4560 ; 0000000259683235 ; 0000000243472601 ; 0000000324104560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2477139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Zhao, Muchen</creatorcontrib><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><title>Energy &amp; environmental science</title><description>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization ( i.e. , Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm −3 with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics. The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</description><subject>Anderson localization</subject><subject>Charge efficiency</subject><subject>Conduction</subject><subject>Copolymers</subject><subject>Dielectrics</subject><subject>Discharge</subject><subject>Displays</subject><subject>Electric power</subject><subject>Electric power systems</subject><subject>Electrical conduction</subject><subject>Energy charge</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Localization</subject><subject>Polymers</subject><subject>Self healing materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc9Og0AQxonRxFq9eDfZ6M0EnQWWhaOptZo08aCeyTIMsA0F3KXGvpXP4JO5Ff-cZjLzy-T7vvG8Uw5XHML0uoiIIJQgqj1vwqWIfCEh3v_t4zQ49I6sXQHEAch04tETNaVfk2p0W7G-a7ZrMqzQ1BAORiOj91rnethtN81gVK2rmqHqFbrhGzFqyVRbZofOqIpYT6bszFq1SEwNLBDAPj9mx95BqRpLJz916r3czZ9n9_7ycfEwu1n6GITh4CMkTnwQpcglL4XkCBIKEphIoaIcY1BQqhzLHIokpqIkipzjRBQYiyLAcOqdj3c7O-jMOomENXZt68xkQSQlD1MHXYxQb7rXDdkhW3Ub0zpdWciDOElTDpGjLkcKTWetoTLrjV4rs804ZLuss9toPv_OeuHgsxE2Fv-4_1-EX8DkfL0</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Xu, Wenhan</creator><creator>Yang, Fei</creator><creator>Zhao, Guodong</creator><creator>Zhang, Shixian</creator><creator>Rui, Guanchun</creator><creator>Zhao, Muchen</creator><creator>Liu, Lingling</creator><creator>Chen, Long-Qing</creator><creator>Wang, Qing</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><orcidid>https://orcid.org/0000-0002-5968-3235</orcidid><orcidid>https://orcid.org/0000-0003-2410-4560</orcidid><orcidid>https://orcid.org/0000000259683235</orcidid><orcidid>https://orcid.org/0000000243472601</orcidid><orcidid>https://orcid.org/0000000324104560</orcidid></search><sort><creationdate>20241112</creationdate><title>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</title><author>Xu, Wenhan ; Yang, Fei ; Zhao, Guodong ; Zhang, Shixian ; Rui, Guanchun ; Zhao, Muchen ; Liu, Lingling ; Chen, Long-Qing ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anderson localization</topic><topic>Charge efficiency</topic><topic>Conduction</topic><topic>Copolymers</topic><topic>Dielectrics</topic><topic>Discharge</topic><topic>Displays</topic><topic>Electric power</topic><topic>Electric power systems</topic><topic>Electrical conduction</topic><topic>Energy charge</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Localization</topic><topic>Polymers</topic><topic>Self healing materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenhan</creatorcontrib><creatorcontrib>Yang, Fei</creatorcontrib><creatorcontrib>Zhao, Guodong</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Zhao, Muchen</creatorcontrib><creatorcontrib>Liu, Lingling</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wenhan</au><au>Yang, Fei</au><au>Zhao, Guodong</au><au>Zhang, Shixian</au><au>Rui, Guanchun</au><au>Zhao, Muchen</au><au>Liu, Lingling</au><au>Chen, Long-Qing</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>17</volume><issue>22</issue><spage>8866</spage><epage>8873</epage><pages>8866-8873</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization ( i.e. , Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm −3 with a charge-discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics. The Anderson localization effect has been exploited in the design of high-temperature dielectric polymers, resulting in reduced conduction loss and outstanding capacitive energy storage performance over a wide temperature range up to 250 °C.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee03705g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4347-2601</orcidid><orcidid>https://orcid.org/0000-0002-5968-3235</orcidid><orcidid>https://orcid.org/0000-0003-2410-4560</orcidid><orcidid>https://orcid.org/0000000259683235</orcidid><orcidid>https://orcid.org/0000000243472601</orcidid><orcidid>https://orcid.org/0000000324104560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-11, Vol.17 (22), p.8866-8873
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_2477139
source Royal Society of Chemistry
subjects Anderson localization
Charge efficiency
Conduction
Copolymers
Dielectrics
Discharge
Displays
Electric power
Electric power systems
Electrical conduction
Energy charge
Energy storage
High temperature
Localization
Polymers
Self healing materials
title Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20polymer%20dielectric%20exhibiting%20ultrahigh%20capacitive%20energy%20storage%20performance%20at%20250%20%C2%B0C&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Xu,%20Wenhan&rft.date=2024-11-12&rft.volume=17&rft.issue=22&rft.spage=8866&rft.epage=8873&rft.pages=8866-8873&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee03705g&rft_dat=%3Cproquest_osti_%3E3126899104%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-c08037249c171f571c070de5c875a4bc60a0fabcfb0d86edfee4d4e85dc65d2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126899104&rft_id=info:pmid/&rfr_iscdi=true