Loading…
Quantum Monte Carlo Calculations of Magnetic Form Factors in Light Nuclei
We present quantum Monte Carlo calculations of magnetic form factors in A=6-10 nuclei, based on Norfolk two- and three-nucleon interactions, and associated one- and two-body electromagnetic currents. Agreement with the available experimental data for ^{6}Li, ^{7}Li, ^{9}Be, and ^{10}B up to values o...
Saved in:
Published in: | Physical review letters 2024-11, Vol.133 (21), p.212501, Article 212501 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present quantum Monte Carlo calculations of magnetic form factors in A=6-10 nuclei, based on Norfolk two- and three-nucleon interactions, and associated one- and two-body electromagnetic currents. Agreement with the available experimental data for ^{6}Li, ^{7}Li, ^{9}Be, and ^{10}B up to values of momentum transfer q∼3 fm^{-1} is achieved when two-nucleon currents are accounted for. We present a set of predictions for the magnetic form factors of ^{7}Be, ^{8}Li, ^{9}Li, and ^{9}C. In these systems, two-body currents account for ∼40%-60% of the total magnetic strength. Measurements in any of these radioactive systems would provide valuable insights on the nuclear magnetic structure emerging from the underlying many-nucleon dynamics. A particularly interesting case is that of ^{7}Be, as it would enable investigations of the magnetic structure of mirror nuclei. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.212501 |