Loading…

SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry

The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2024-12, Vol.36 (9)
Main Authors: Vallin, Micah P, Karkee, Rijan, Kucinski, Theresa M, Zhao, Huan, Htoon, Han, Lee, Chanho, Martinez, Ramon M, Fensin, Saryu J, Zhang, Richard Z, Pettes, Michael T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 9
container_start_page
container_title Nanotechnology
container_volume 36
creator Vallin, Micah P
Karkee, Rijan
Kucinski, Theresa M
Zhao, Huan
Htoon, Han
Lee, Chanho
Martinez, Ramon M
Fensin, Saryu J
Zhang, Richard Z
Pettes, Michael T
description The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe2) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe2 yielded 5.4 ± 3.5 Wm-1 K-1 for the optothermal Raman method, and 2.40 ± 0.81 Wm-1 K-1 for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe2, 1.3–2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.
doi_str_mv 10.1088/1361-6528/ad99df
format article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2482563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nanoad99df</sourcerecordid><originalsourceid>FETCH-LOGICAL-i643-dd109193fae8a7f8c9ea1db7dfae42836066ed7780536a4853fe3cc54970a6713</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoWEf3Lotra5MmzWMpgy8YEGz3IebBZJwmQ5MR5t_bUnV1L-ceDvd8ANwi-IAg5zXCFFW0bXitjBDGnYHiXzoHBRQtqwjh5BJcpbSDECHeoAL0XehsU-atHQe1L3UM5qiz__b5VLoxDmU85Ph3_VCDCqUKpuxy_LKpViH7atmXiDjYPJ6uwYVT-2RvfucK9M9P_fq12ry_vK0fN5WnBFfGICiQwE5ZrpjjWliFzCczk0Aajimk1BrGOGwxVYS32FmsdUsEg4oyhFfgbomNKXuZtM9Wb6cGweosG8KbluLJdL-YfDzIXTyOYfpIIihnanJGJGdEcqGGfwA9wWFC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry</title><source>Institute of Physics</source><creator>Vallin, Micah P ; Karkee, Rijan ; Kucinski, Theresa M ; Zhao, Huan ; Htoon, Han ; Lee, Chanho ; Martinez, Ramon M ; Fensin, Saryu J ; Zhang, Richard Z ; Pettes, Michael T</creator><creatorcontrib>Vallin, Micah P ; Karkee, Rijan ; Kucinski, Theresa M ; Zhao, Huan ; Htoon, Han ; Lee, Chanho ; Martinez, Ramon M ; Fensin, Saryu J ; Zhang, Richard Z ; Pettes, Michael T ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe2) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe2 yielded 5.4 ± 3.5 Wm-1 K-1 for the optothermal Raman method, and 2.40 ± 0.81 Wm-1 K-1 for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe2, 1.3–2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad99df</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>2D materials ; anti-Stokes scattering ; MATERIALS SCIENCE ; Raman thermometry ; thermal conductivity ; thermoelectrics ; tin diselenide</subject><ispartof>Nanotechnology, 2024-12, Vol.36 (9)</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6587-5778 ; 0000-0001-6862-6841 ; 0000-0002-7361-5503 ; 0000-0001-5826-3784 ; 0000000301245213 ; 0000000249820865 ; 0000000336962896 ; 0000000265875778 ; 0000000287092686 ; 000000020581392X ; 0000000181355353 ; 0000000158263784 ; 0000000168626841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2482563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallin, Micah P</creatorcontrib><creatorcontrib>Karkee, Rijan</creatorcontrib><creatorcontrib>Kucinski, Theresa M</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Htoon, Han</creatorcontrib><creatorcontrib>Lee, Chanho</creatorcontrib><creatorcontrib>Martinez, Ramon M</creatorcontrib><creatorcontrib>Fensin, Saryu J</creatorcontrib><creatorcontrib>Zhang, Richard Z</creatorcontrib><creatorcontrib>Pettes, Michael T</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe2) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe2 yielded 5.4 ± 3.5 Wm-1 K-1 for the optothermal Raman method, and 2.40 ± 0.81 Wm-1 K-1 for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe2, 1.3–2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.</description><subject>2D materials</subject><subject>anti-Stokes scattering</subject><subject>MATERIALS SCIENCE</subject><subject>Raman thermometry</subject><subject>thermal conductivity</subject><subject>thermoelectrics</subject><subject>tin diselenide</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoWEf3Lotra5MmzWMpgy8YEGz3IebBZJwmQ5MR5t_bUnV1L-ceDvd8ANwi-IAg5zXCFFW0bXitjBDGnYHiXzoHBRQtqwjh5BJcpbSDECHeoAL0XehsU-atHQe1L3UM5qiz__b5VLoxDmU85Ph3_VCDCqUKpuxy_LKpViH7atmXiDjYPJ6uwYVT-2RvfucK9M9P_fq12ry_vK0fN5WnBFfGICiQwE5ZrpjjWliFzCczk0Aajimk1BrGOGwxVYS32FmsdUsEg4oyhFfgbomNKXuZtM9Wb6cGweosG8KbluLJdL-YfDzIXTyOYfpIIihnanJGJGdEcqGGfwA9wWFC</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Vallin, Micah P</creator><creator>Karkee, Rijan</creator><creator>Kucinski, Theresa M</creator><creator>Zhao, Huan</creator><creator>Htoon, Han</creator><creator>Lee, Chanho</creator><creator>Martinez, Ramon M</creator><creator>Fensin, Saryu J</creator><creator>Zhang, Richard Z</creator><creator>Pettes, Michael T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6587-5778</orcidid><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000-0002-7361-5503</orcidid><orcidid>https://orcid.org/0000-0001-5826-3784</orcidid><orcidid>https://orcid.org/0000000301245213</orcidid><orcidid>https://orcid.org/0000000249820865</orcidid><orcidid>https://orcid.org/0000000336962896</orcidid><orcidid>https://orcid.org/0000000265875778</orcidid><orcidid>https://orcid.org/0000000287092686</orcidid><orcidid>https://orcid.org/000000020581392X</orcidid><orcidid>https://orcid.org/0000000181355353</orcidid><orcidid>https://orcid.org/0000000158263784</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid></search><sort><creationdate>20241219</creationdate><title>SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry</title><author>Vallin, Micah P ; Karkee, Rijan ; Kucinski, Theresa M ; Zhao, Huan ; Htoon, Han ; Lee, Chanho ; Martinez, Ramon M ; Fensin, Saryu J ; Zhang, Richard Z ; Pettes, Michael T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i643-dd109193fae8a7f8c9ea1db7dfae42836066ed7780536a4853fe3cc54970a6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>anti-Stokes scattering</topic><topic>MATERIALS SCIENCE</topic><topic>Raman thermometry</topic><topic>thermal conductivity</topic><topic>thermoelectrics</topic><topic>tin diselenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallin, Micah P</creatorcontrib><creatorcontrib>Karkee, Rijan</creatorcontrib><creatorcontrib>Kucinski, Theresa M</creatorcontrib><creatorcontrib>Zhao, Huan</creatorcontrib><creatorcontrib>Htoon, Han</creatorcontrib><creatorcontrib>Lee, Chanho</creatorcontrib><creatorcontrib>Martinez, Ramon M</creatorcontrib><creatorcontrib>Fensin, Saryu J</creatorcontrib><creatorcontrib>Zhang, Richard Z</creatorcontrib><creatorcontrib>Pettes, Michael T</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallin, Micah P</au><au>Karkee, Rijan</au><au>Kucinski, Theresa M</au><au>Zhao, Huan</au><au>Htoon, Han</au><au>Lee, Chanho</au><au>Martinez, Ramon M</au><au>Fensin, Saryu J</au><au>Zhang, Richard Z</au><au>Pettes, Michael T</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2024-12-19</date><risdate>2024</risdate><volume>36</volume><issue>9</issue><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe2) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe2 yielded 5.4 ± 3.5 Wm-1 K-1 for the optothermal Raman method, and 2.40 ± 0.81 Wm-1 K-1 for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe2, 1.3–2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ad99df</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6587-5778</orcidid><orcidid>https://orcid.org/0000-0001-6862-6841</orcidid><orcidid>https://orcid.org/0000-0002-7361-5503</orcidid><orcidid>https://orcid.org/0000-0001-5826-3784</orcidid><orcidid>https://orcid.org/0000000301245213</orcidid><orcidid>https://orcid.org/0000000249820865</orcidid><orcidid>https://orcid.org/0000000336962896</orcidid><orcidid>https://orcid.org/0000000265875778</orcidid><orcidid>https://orcid.org/0000000287092686</orcidid><orcidid>https://orcid.org/000000020581392X</orcidid><orcidid>https://orcid.org/0000000181355353</orcidid><orcidid>https://orcid.org/0000000158263784</orcidid><orcidid>https://orcid.org/0000000168626841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2024-12, Vol.36 (9)
issn 0957-4484
1361-6528
language eng
recordid cdi_osti_scitechconnect_2482563
source Institute of Physics
subjects 2D materials
anti-Stokes scattering
MATERIALS SCIENCE
Raman thermometry
thermal conductivity
thermoelectrics
tin diselenide
title SnSe2 thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnSe2%20thermal%20conductivity%20from%20optothermal%20Raman%20and%20Stokes/anti-Stokes%20thermometry&rft.jtitle=Nanotechnology&rft.au=Vallin,%20Micah%20P&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-12-19&rft.volume=36&rft.issue=9&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad99df&rft_dat=%3Ciop_osti_%3Enanoad99df%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i643-dd109193fae8a7f8c9ea1db7dfae42836066ed7780536a4853fe3cc54970a6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true