Loading…

Best possible strategy for finding ground states

Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2001-06, Vol.86 (23), p.5219-5222
Main Authors: Franz, A, Hoffmann, K H, Salamon, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3
cites cdi_FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3
container_end_page 5222
container_issue 23
container_start_page 5219
container_title Physical review letters
container_volume 86
creator Franz, A
Hoffmann, K H
Salamon, P
description Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.
doi_str_mv 10.1103/PhysRevLett.86.5219
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_40203643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70901136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMobk4_gSAFwbfOe5MsaR91-A8Giuw9tOntVunamaTCvr0ZG-jTvXB_51zOYewaYYoI4v5jvfOf9LOgEKaZms445idsjKDzVCPKUzYGEJjmAHrELrz_AgDkKjtnI0SRSan4mMEj-ZBse--bsqXEB1cEWu2SundJ3XRV062SleuHroq3ePKX7KwuWk9Xxzlhy-en5fw1Xby_vM0fFqkVPA-pRLQ8q4CTBqXiVpc5LzTXmUQNudCi1LNS5rxGJAmVjTjHCmeysgJJTNjtwbb3oTHeNoHs2vZdRzYYCRyEkiJSdwdq6_rvISYxm8Zbatuio37wJn6CmFVFUBxA62JUR7XZumZTuJ1BMPs2zb82TabMvs2oujnaD-WGqj_NsT7xCx5rcRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70901136</pqid></control><display><type>article</type><title>Best possible strategy for finding ground states</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Franz, A ; Hoffmann, K H ; Salamon, P</creator><creatorcontrib>Franz, A ; Hoffmann, K H ; Salamon, P</creatorcontrib><description>Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.86.5219</identifier><identifier>PMID: 11384462</identifier><language>eng</language><publisher>United States: The American Physical Society</publisher><subject>ALGORITHMS ; ANNEALING ; BASIC BIOLOGICAL SCIENCES ; GROUND STATES ; Models, Theoretical ; NEURAL NETWORKS ; PROTEINS ; SPIN ; STATISTICS</subject><ispartof>Physical review letters, 2001-06, Vol.86 (23), p.5219-5222</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3</citedby><cites>FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11384462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/40203643$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Franz, A</creatorcontrib><creatorcontrib>Hoffmann, K H</creatorcontrib><creatorcontrib>Salamon, P</creatorcontrib><title>Best possible strategy for finding ground states</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.</description><subject>ALGORITHMS</subject><subject>ANNEALING</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>GROUND STATES</subject><subject>Models, Theoretical</subject><subject>NEURAL NETWORKS</subject><subject>PROTEINS</subject><subject>SPIN</subject><subject>STATISTICS</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMobk4_gSAFwbfOe5MsaR91-A8Giuw9tOntVunamaTCvr0ZG-jTvXB_51zOYewaYYoI4v5jvfOf9LOgEKaZms445idsjKDzVCPKUzYGEJjmAHrELrz_AgDkKjtnI0SRSan4mMEj-ZBse--bsqXEB1cEWu2SundJ3XRV062SleuHroq3ePKX7KwuWk9Xxzlhy-en5fw1Xby_vM0fFqkVPA-pRLQ8q4CTBqXiVpc5LzTXmUQNudCi1LNS5rxGJAmVjTjHCmeysgJJTNjtwbb3oTHeNoHs2vZdRzYYCRyEkiJSdwdq6_rvISYxm8Zbatuio37wJn6CmFVFUBxA62JUR7XZumZTuJ1BMPs2zb82TabMvs2oujnaD-WGqj_NsT7xCx5rcRA</recordid><startdate>20010604</startdate><enddate>20010604</enddate><creator>Franz, A</creator><creator>Hoffmann, K H</creator><creator>Salamon, P</creator><general>The American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20010604</creationdate><title>Best possible strategy for finding ground states</title><author>Franz, A ; Hoffmann, K H ; Salamon, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ALGORITHMS</topic><topic>ANNEALING</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>GROUND STATES</topic><topic>Models, Theoretical</topic><topic>NEURAL NETWORKS</topic><topic>PROTEINS</topic><topic>SPIN</topic><topic>STATISTICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franz, A</creatorcontrib><creatorcontrib>Hoffmann, K H</creatorcontrib><creatorcontrib>Salamon, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franz, A</au><au>Hoffmann, K H</au><au>Salamon, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best possible strategy for finding ground states</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2001-06-04</date><risdate>2001</risdate><volume>86</volume><issue>23</issue><spage>5219</spage><epage>5222</epage><pages>5219-5222</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.</abstract><cop>United States</cop><pub>The American Physical Society</pub><pmid>11384462</pmid><doi>10.1103/PhysRevLett.86.5219</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2001-06, Vol.86 (23), p.5219-5222
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_40203643
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects ALGORITHMS
ANNEALING
BASIC BIOLOGICAL SCIENCES
GROUND STATES
Models, Theoretical
NEURAL NETWORKS
PROTEINS
SPIN
STATISTICS
title Best possible strategy for finding ground states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20possible%20strategy%20for%20finding%20ground%20states&rft.jtitle=Physical%20review%20letters&rft.au=Franz,%20A&rft.date=2001-06-04&rft.volume=86&rft.issue=23&rft.spage=5219&rft.epage=5222&rft.pages=5219-5222&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.86.5219&rft_dat=%3Cproquest_osti_%3E70901136%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-411c28d02e706628dfb92a727841709373b75b492f11e40dc1c221d154dc31e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70901136&rft_id=info:pmid/11384462&rfr_iscdi=true