Loading…

Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz

A dc superconducting quantum interference device (SQUID) with a resonant microstrip input is operated as an amplifier at temperatures down to 20 mK. A second SQUID is used as a postamplifier. Below about 100 mK, the noise temperature is 52±20 mK at 538 MHz, estimated from measurements of signal-to-n...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2001-02, Vol.78 (7), p.967-969
Main Authors: Mück, Michael, Kycia, J. B., Clarke, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A dc superconducting quantum interference device (SQUID) with a resonant microstrip input is operated as an amplifier at temperatures down to 20 mK. A second SQUID is used as a postamplifier. Below about 100 mK, the noise temperature is 52±20 mK at 538 MHz, estimated from measurements of signal-to-noise ratio, and 47±10 mK at 519 MHz, estimated from the noise generated by a resonant circuit coupled to the input. The quantum-limited noise temperatures are 26 and 25 mK, respectively. The measured noise temperature is limited by hot electrons generated by the bias current.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1347384