Loading…
Martensitic fcc-to-hcp transformation observed in xenon at high pressure
Angle-resolved x-ray diffraction patterns of Xe to 127 GPa indicate that the fcc-to-hcp transition occurs martensitically between 3 and 70 GPa in diamond-anvil cells without an intermediate phase. These data also reveal that the transition occurs by the introduction of stacking disorder in the fcc l...
Saved in:
Published in: | Physical review letters 2001-05, Vol.86 (20), p.4552-4555 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Angle-resolved x-ray diffraction patterns of Xe to 127 GPa indicate that the fcc-to-hcp transition occurs martensitically between 3 and 70 GPa in diamond-anvil cells without an intermediate phase. These data also reveal that the transition occurs by the introduction of stacking disorder in the fcc lattice at low pressure, which grows into hcp domains with increasing pressure. The small energy difference between the hcp and the fcc structures may allow the two phases to coexist over a wide pressure range. Evidence of similar stacking disorder and incipient growth of an hcp phase are also observed in solid Kr. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.86.4552 |