Loading…

Raman scattering study of InAs/GaInSb strained layer superlattices

We present a Raman scattering study of the InAs/GaInSb superlattice. This new superlattice is promising as a long wavelength infrared detector material. The samples were grown by molecular beam epitaxy and their structural parameters were determined by Rutherford backscattering and x-ray diffraction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1991-11, Vol.70 (10), p.5608-5614
Main Authors: SELA, I, CAMPBELL, I. H, LAURICH, B. K, SMITH, D. L, SAMOSKA, L. A, BOLOGNESI, C. R, GOSSARD, A. C, KROEMER, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a Raman scattering study of the InAs/GaInSb superlattice. This new superlattice is promising as a long wavelength infrared detector material. The samples were grown by molecular beam epitaxy and their structural parameters were determined by Rutherford backscattering and x-ray diffraction. Samples were grown on [001] GaAs substrates with GaSb buffers, and directly on [001] GaSb substrates. Cross-sectional transmission electron micrographs show that for the samples grown on GaAs substrates, a high density of dislocations was generated at the GaAs-GaSb interface, and many of these dislocations thread through the superlattice. The samples grown directly on GaSb had a much lower dislocation density. The Raman spectra of the InAs/GaInSb superlattice shows a single peak, which is a superposition of scattering from the LO phonons in InAs and in GaInSb. For unstrained InAs and GaInSb, the LO phonon energies are sufficiently separated that they would be well resolved in Raman scattering. However, the strain introduced into these materials by the pseudomorphic boundary conditions moves the two phonons closer together energetically so that only one peak is seen in the Raman spectrum of the superlattice. A high energy Raman scattering tail is seen in some of the samples. This tail is from Ga-As local modes. Such modes may be due to As incorporation in the GaInSb, Ga incorporation in the InAs or phase mixing at the interfaces.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.350174