Loading…

Effect of refractory additives on coercivity of sintered (Nd, Dy)(Fe, Co) BM magnets (M=Cr/W/Zr/Nb/Ta) (abstract)

In a trial to develop heat-resistant sintered Nd2Fe14B magnets, a refractory element (Cr/W/Zr/Nb/Ta) was selected as an additive incorporating Dy and Co in the Nd-Fe-B composition. Nd13Dy1.5Fe72−xCo6B7.5Mx alloys (M=Cr/W/Nb/Ta, x=0, or 3.5) were arc-melted, pulverized, compacted, and sintered by the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1991-11, Vol.70 (10), p.6375-6375
Main Authors: Lin, K. D., Tzuoo, U. C., Tung, J. Y., Chin, T. S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a trial to develop heat-resistant sintered Nd2Fe14B magnets, a refractory element (Cr/W/Zr/Nb/Ta) was selected as an additive incorporating Dy and Co in the Nd-Fe-B composition. Nd13Dy1.5Fe72−xCo6B7.5Mx alloys (M=Cr/W/Nb/Ta, x=0, or 3.5) were arc-melted, pulverized, compacted, and sintered by the conventional powder metallurgy method. It was found that W/Cr greatly enhances the as-sintered intrinsic coercivity (iHc, in kA/m), e.g., from 510 (x=0) to 810 (W, x=3.5) or 740 (Cr, x=3.5). An additional two-stage annealing at 900 and 600 °C for 1 h each led to an even higher iHc of 1000 (W, x=3.5). While Nb/Ta moderately enhanced as-sintered iHc, and responded less to additional annealing. Temperature coefficients of remanence was found to be greatly improved by the W or Cr addition, e.g., 0.43%/°C for x=0 and 0.06%/°C for M=W, x=3.5 (p=1, 20–150 °C). They are thus very suitable for applications at temperatures up to 150 °C. EPMA analyses showed the possible existence of a M2FeB2 (M=W/Nb/Ta) phase at grain boundaries. Thermomagnetic analyses and detailed microstructure of the sintered and/or annealed magnets are discussed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.349947