Loading…
Natural-abundance sup 13 C NMR study of glycogen repletion in human liver and muscle
Optimizing the surface-coil design and spectral-acquisition parameters has led to the observation of the {sup 13}C NMR natural abundance glycogen signal in man at 2.1 T. Both the human muscle and hepatic glycogen signals can be detected definitively with a time resolution of {approx}13 min. A {sup 1...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1989-03, Vol.86:5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optimizing the surface-coil design and spectral-acquisition parameters has led to the observation of the {sup 13}C NMR natural abundance glycogen signal in man at 2.1 T. Both the human muscle and hepatic glycogen signals can be detected definitively with a time resolution of {approx}13 min. A {sup 1}H/{sup 13}C concentric surface coil was used. The {sup 1}H outer coil was 11 cm in diameter; the {sup 13}C inner coil was 8 cm in diameter. The coils were tuned to 89.3 MHz and 22.4 MHz, respectively. The {sup 1}H coil was used for optimizing field homogeneity (shimming) the magnet and for single-frequency decoupling of the C{sub 1} glycogen signal. Total power deposition from both the transmitter pulse and the continuous wave decoupling did not exceed the Food and Drug Administration guideline of 8 W/kg of tissue. Experiments were done for which healthy subjects returned to the magnets at different times for {sup 13}C NMR measurement. The spectral difference between experiments was within the noise in the C{sub 1} glycogen region. Because of the spectral reproducibility and the signal sensitivity, hepatic glycogen repletion can be followed. Four hours postprandial, hepatic glycogen increases by 3.8 times from the basal fasted state. The hepatic glycogen data correspond directly to previous biopsy results and support the use of {sup 13}C NMR as a noninvasive probe of human metabolism. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.86.5.1439 |