Loading…

MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range

A physically based semiempirical model for electron mobilities of the MOSFET inversion layers that is valid over a large temperature range (77 K ≤ ⊺ ≤ 370 K) is discussed. It is based on a reciprocal sum of three scattering mechanisms, i.e. phonon, Coulomb, and surface roughness scattering, and is e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1989-08, Vol.36 (8), p.1456-1463
Main Authors: Jeon, D.S., Burk, D.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63
cites cdi_FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63
container_end_page 1463
container_issue 8
container_start_page 1456
container_title IEEE transactions on electron devices
container_volume 36
creator Jeon, D.S.
Burk, D.E.
description A physically based semiempirical model for electron mobilities of the MOSFET inversion layers that is valid over a large temperature range (77 K ≤ ⊺ ≤ 370 K) is discussed. It is based on a reciprocal sum of three scattering mechanisms, i.e. phonon, Coulomb, and surface roughness scattering, and is explicitly dependent on temperature and transverse electric field. The model is more physically based than other semiempirical models, but has an equivalent number of extracted parameters. It is shown that this model compares more favorably with the experimental data than previous models. The implicit dependencies of the model parameters on oxide charge density and surface roughness are confirmed.
doi_str_mv 10.1109/16.30959
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5295581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>30959</ieee_id><sourcerecordid>25299372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63</originalsourceid><addsrcrecordid>eNqN0ctP3DAQB2ALFalbQOq1NwuJqpcsfsSJfUSrviQQB-Bs2d4JuHKSXU8WtP89plnRa09-zKef7BlCPnO25JyZS94sJTPKHJEFV6qtTFM3H8iCMa4rI7X8SD4h_inHpq7Fgmxvbu9-fL-nkCBMeRxoHJ4hYyy75PaQaT_6mOIUAWlFHd087TEGl9Keeoewpgh9rKDfxPx2XfgaEu3GXOxLXAOdSg2ym3YZaHbDI5yS484lhLPDekIeygNWv6rr25-_V1fXVaiFnqq10tIHoRrujW-577pGMAW19pq7oLn3gUkIde1Ey8AzLbxyMoBgbWiVa-QJOZ9zR5yixRAnCE9hHIbyUauEUUrzgr7OaJPH7Q5wsn3EACm5AcYdWlGgka34TyhNgd9mGPKImKGzmxx7l_eWM_s2Icsb-3dChV4cMh2W3nWlPSHiP19GZ5isi_syuwgA7-U54xU73pgq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25299339</pqid></control><display><type>article</type><title>MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jeon, D.S. ; Burk, D.E.</creator><creatorcontrib>Jeon, D.S. ; Burk, D.E.</creatorcontrib><description>A physically based semiempirical model for electron mobilities of the MOSFET inversion layers that is valid over a large temperature range (77 K ≤ ⊺ ≤ 370 K) is discussed. It is based on a reciprocal sum of three scattering mechanisms, i.e. phonon, Coulomb, and surface roughness scattering, and is explicitly dependent on temperature and transverse electric field. The model is more physically based than other semiempirical models, but has an equivalent number of extracted parameters. It is shown that this model compares more favorably with the experimental data than previous models. The implicit dependencies of the model parameters on oxide charge density and surface roughness are confirmed.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.30959</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>360603 - Materials- Properties ; 426000 - Engineering- Components, Electron Devices &amp; Circuits- (1990-) ; 640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena ; 990200 - Mathematics &amp; Computers ; Applied sciences ; ATOMIC AND MOLECULAR PHYSICS ; Carrier confinement ; CARRIER MOBILITY ; CHARGE DENSITY ; Circuit simulation ; DATA ; Electron mobility ; ELECTRON-PHONON COUPLING ; Electronics ; ENGINEERING ; Exact sciences and technology ; EXPERIMENTAL DATA ; FIELD EFFECT TRANSISTORS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INFORMATION ; IONIZATION ; MATERIALS SCIENCE ; MOBILITY ; MOS TRANSISTORS ; MOSFET ; MOSFET circuits ; NUMERICAL DATA ; PARAMETRIC ANALYSIS ; Phonons ; Rough surfaces ; SCATTERING ; SEMICONDUCTOR DEVICES ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SURFACE IONIZATION ; Surface roughness ; TEMPERATURE DEPENDENCE ; Temperature distribution ; TEMPERATURE EFFECTS ; TRANSISTORS</subject><ispartof>IEEE transactions on electron devices, 1989-08, Vol.36 (8), p.1456-1463</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63</citedby><cites>FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/30959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19649034$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5295581$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, D.S.</creatorcontrib><creatorcontrib>Burk, D.E.</creatorcontrib><title>MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A physically based semiempirical model for electron mobilities of the MOSFET inversion layers that is valid over a large temperature range (77 K ≤ ⊺ ≤ 370 K) is discussed. It is based on a reciprocal sum of three scattering mechanisms, i.e. phonon, Coulomb, and surface roughness scattering, and is explicitly dependent on temperature and transverse electric field. The model is more physically based than other semiempirical models, but has an equivalent number of extracted parameters. It is shown that this model compares more favorably with the experimental data than previous models. The implicit dependencies of the model parameters on oxide charge density and surface roughness are confirmed.</description><subject>360603 - Materials- Properties</subject><subject>426000 - Engineering- Components, Electron Devices &amp; Circuits- (1990-)</subject><subject>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</subject><subject>990200 - Mathematics &amp; Computers</subject><subject>Applied sciences</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Carrier confinement</subject><subject>CARRIER MOBILITY</subject><subject>CHARGE DENSITY</subject><subject>Circuit simulation</subject><subject>DATA</subject><subject>Electron mobility</subject><subject>ELECTRON-PHONON COUPLING</subject><subject>Electronics</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INFORMATION</subject><subject>IONIZATION</subject><subject>MATERIALS SCIENCE</subject><subject>MOBILITY</subject><subject>MOS TRANSISTORS</subject><subject>MOSFET</subject><subject>MOSFET circuits</subject><subject>NUMERICAL DATA</subject><subject>PARAMETRIC ANALYSIS</subject><subject>Phonons</subject><subject>Rough surfaces</subject><subject>SCATTERING</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SURFACE IONIZATION</subject><subject>Surface roughness</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Temperature distribution</subject><subject>TEMPERATURE EFFECTS</subject><subject>TRANSISTORS</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqN0ctP3DAQB2ALFalbQOq1NwuJqpcsfsSJfUSrviQQB-Bs2d4JuHKSXU8WtP89plnRa09-zKef7BlCPnO25JyZS94sJTPKHJEFV6qtTFM3H8iCMa4rI7X8SD4h_inHpq7Fgmxvbu9-fL-nkCBMeRxoHJ4hYyy75PaQaT_6mOIUAWlFHd087TEGl9Keeoewpgh9rKDfxPx2XfgaEu3GXOxLXAOdSg2ym3YZaHbDI5yS484lhLPDekIeygNWv6rr25-_V1fXVaiFnqq10tIHoRrujW-577pGMAW19pq7oLn3gUkIde1Ey8AzLbxyMoBgbWiVa-QJOZ9zR5yixRAnCE9hHIbyUauEUUrzgr7OaJPH7Q5wsn3EACm5AcYdWlGgka34TyhNgd9mGPKImKGzmxx7l_eWM_s2Icsb-3dChV4cMh2W3nWlPSHiP19GZ5isi_syuwgA7-U54xU73pgq</recordid><startdate>19890801</startdate><enddate>19890801</enddate><creator>Jeon, D.S.</creator><creator>Burk, D.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>19890801</creationdate><title>MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range</title><author>Jeon, D.S. ; Burk, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>360603 - Materials- Properties</topic><topic>426000 - Engineering- Components, Electron Devices &amp; Circuits- (1990-)</topic><topic>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</topic><topic>990200 - Mathematics &amp; Computers</topic><topic>Applied sciences</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Carrier confinement</topic><topic>CARRIER MOBILITY</topic><topic>CHARGE DENSITY</topic><topic>Circuit simulation</topic><topic>DATA</topic><topic>Electron mobility</topic><topic>ELECTRON-PHONON COUPLING</topic><topic>Electronics</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INFORMATION</topic><topic>IONIZATION</topic><topic>MATERIALS SCIENCE</topic><topic>MOBILITY</topic><topic>MOS TRANSISTORS</topic><topic>MOSFET</topic><topic>MOSFET circuits</topic><topic>NUMERICAL DATA</topic><topic>PARAMETRIC ANALYSIS</topic><topic>Phonons</topic><topic>Rough surfaces</topic><topic>SCATTERING</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SURFACE IONIZATION</topic><topic>Surface roughness</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Temperature distribution</topic><topic>TEMPERATURE EFFECTS</topic><topic>TRANSISTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, D.S.</creatorcontrib><creatorcontrib>Burk, D.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, D.S.</au><au>Burk, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1989-08-01</date><risdate>1989</risdate><volume>36</volume><issue>8</issue><spage>1456</spage><epage>1463</epage><pages>1456-1463</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A physically based semiempirical model for electron mobilities of the MOSFET inversion layers that is valid over a large temperature range (77 K ≤ ⊺ ≤ 370 K) is discussed. It is based on a reciprocal sum of three scattering mechanisms, i.e. phonon, Coulomb, and surface roughness scattering, and is explicitly dependent on temperature and transverse electric field. The model is more physically based than other semiempirical models, but has an equivalent number of extracted parameters. It is shown that this model compares more favorably with the experimental data than previous models. The implicit dependencies of the model parameters on oxide charge density and surface roughness are confirmed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.30959</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1989-08, Vol.36 (8), p.1456-1463
issn 0018-9383
1557-9646
language eng
recordid cdi_osti_scitechconnect_5295581
source IEEE Electronic Library (IEL) Journals
subjects 360603 - Materials- Properties
426000 - Engineering- Components, Electron Devices & Circuits- (1990-)
640304 - Atomic, Molecular & Chemical Physics- Collision Phenomena
990200 - Mathematics & Computers
Applied sciences
ATOMIC AND MOLECULAR PHYSICS
Carrier confinement
CARRIER MOBILITY
CHARGE DENSITY
Circuit simulation
DATA
Electron mobility
ELECTRON-PHONON COUPLING
Electronics
ENGINEERING
Exact sciences and technology
EXPERIMENTAL DATA
FIELD EFFECT TRANSISTORS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
INFORMATION
IONIZATION
MATERIALS SCIENCE
MOBILITY
MOS TRANSISTORS
MOSFET
MOSFET circuits
NUMERICAL DATA
PARAMETRIC ANALYSIS
Phonons
Rough surfaces
SCATTERING
SEMICONDUCTOR DEVICES
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SURFACE IONIZATION
Surface roughness
TEMPERATURE DEPENDENCE
Temperature distribution
TEMPERATURE EFFECTS
TRANSISTORS
title MOSFET electron inversion layer mobilities - a physically based semi-empirical model for a wide temperature range
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOSFET%20electron%20inversion%20layer%20mobilities%20-%20a%20physically%20based%20semi-empirical%20model%20for%20a%20wide%20temperature%20range&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Jeon,%20D.S.&rft.date=1989-08-01&rft.volume=36&rft.issue=8&rft.spage=1456&rft.epage=1463&rft.pages=1456-1463&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.30959&rft_dat=%3Cproquest_osti_%3E25299372%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-d583bc2561b9b71bff6205e48b81ac81bbc03ec44a270eb082b5a3ce207c75a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25299339&rft_id=info:pmid/&rft_ieee_id=30959&rfr_iscdi=true