Loading…
A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces
Using computational methods, we consider the catalyzed combustion of lean hydrogenoxygen mixtures in a stagnation flow over a platinum surface and in a flat-plate boundary layer. The analysis includes elementary chemistry in the gas phase as well as on the surface. The stagnation flow is modeled us...
Saved in:
Published in: | Combustion and flame 1994-03, Vol.96 (4), p.393-406 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using computational methods, we consider the catalyzed combustion of lean hydrogenoxygen mixtures in a stagnation flow over a platinum surface and in a flat-plate boundary layer. The analysis includes elementary chemistry in the gas phase as well as on the surface. The stagnation flow is modeled using a similarity transformation that leads to a one-dimensional boundary-value problem, whereas the flat-plate boundary layer is modeled by the use of the boundary-layer assumption. Predictions of each model are compared with experimental measurements of (a) catalytic ignition and combustion of hydrogenoxygen mixtures at low pressure (100 millitorr) and (b) OH concentration profiles in catalytically supported combustion at atmospheric pressure. The article proposes reaction mechanisms and interprets the catalytic behavior in terms of the chemistry models. |
---|---|
ISSN: | 0010-2180 1556-2921 |
DOI: | 10.1016/0010-2180(94)90107-4 |