Loading…
Area method for prediction of fluid-phase equilibria
This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, th...
Saved in:
Published in: | Industrial & engineering chemistry research 1992-03, Vol.31 (3), p.942-949 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543 |
---|---|
cites | |
container_end_page | 949 |
container_issue | 3 |
container_start_page | 942 |
container_title | Industrial & engineering chemistry research |
container_volume | 31 |
creator | Eubank, Philip T Elhassan, Ahmed E Barrufet, Maria A Whiting, Wallace B |
description | This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques. |
doi_str_mv | 10.1021/ie00003a041 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5320667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c714427327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgCs7pyS9QRPAg1SRNmuw4518YKGyCeAnv0oRldk1NOtBvb0ZleDCXHPLL-z48CJ0SfEUwJdfO4HQKwIzsoQHhFOccM76PBlhKmXMp-SE6inGVFOeMDRAbBwPZ2nRLX2XWh6wNpnK6c77JvM1svXFV3i4hmsx8blztFsHBMTqwUEdz8nsP0ev93XzymE-fH54m42kOxajocmEXmEoutSAV4UaIkhuwsKAjkIQxQVlVlgkQk4ItpChKMBSIZLiSZMRZMURn_VwfO6eidp3RS-2bxuhO8YLishQJXfZIBx9jMFa1wa0hfCuC1bYV9aeVpM973ULUUNsAjXZx94WTgnIqE8t75mJnvnbPED5UWim4mr_M1PuMcPZ2e6O2IS56Dzqqld-EJvXyb4AfMdt6Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Area method for prediction of fluid-phase equilibria</title><source>ACS CRKN Legacy Archives</source><creator>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</creator><creatorcontrib>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</creatorcontrib><description>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00003a041</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>420400 - Engineering- Heat Transfer & Fluid Flow ; BINARY MIXTURES ; BUBBLES ; CALCULATION METHODS ; Chemistry ; CRITICAL FLOW ; DISPERSIONS ; ENGINEERING ; EQUATIONS ; EQUATIONS OF STATE ; EQUILIBRIUM ; Exact sciences and technology ; FLUID FLOW ; FUELS ; General and physical chemistry ; HIGH PRESSURE ; LIQUID FUELS ; MIXTURES ; Phase equilibria ; PHASE STUDIES</subject><ispartof>Industrial & engineering chemistry research, 1992-03, Vol.31 (3), p.942-949</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00003a041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00003a041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27064,27924,27925,56766,56816</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5132528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5320667$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eubank, Philip T</creatorcontrib><creatorcontrib>Elhassan, Ahmed E</creatorcontrib><creatorcontrib>Barrufet, Maria A</creatorcontrib><creatorcontrib>Whiting, Wallace B</creatorcontrib><title>Area method for prediction of fluid-phase equilibria</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</description><subject>420400 - Engineering- Heat Transfer & Fluid Flow</subject><subject>BINARY MIXTURES</subject><subject>BUBBLES</subject><subject>CALCULATION METHODS</subject><subject>Chemistry</subject><subject>CRITICAL FLOW</subject><subject>DISPERSIONS</subject><subject>ENGINEERING</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>FUELS</subject><subject>General and physical chemistry</subject><subject>HIGH PRESSURE</subject><subject>LIQUID FUELS</subject><subject>MIXTURES</subject><subject>Phase equilibria</subject><subject>PHASE STUDIES</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LwzAYBvAgCs7pyS9QRPAg1SRNmuw4518YKGyCeAnv0oRldk1NOtBvb0ZleDCXHPLL-z48CJ0SfEUwJdfO4HQKwIzsoQHhFOccM76PBlhKmXMp-SE6inGVFOeMDRAbBwPZ2nRLX2XWh6wNpnK6c77JvM1svXFV3i4hmsx8blztFsHBMTqwUEdz8nsP0ev93XzymE-fH54m42kOxajocmEXmEoutSAV4UaIkhuwsKAjkIQxQVlVlgkQk4ItpChKMBSIZLiSZMRZMURn_VwfO6eidp3RS-2bxuhO8YLishQJXfZIBx9jMFa1wa0hfCuC1bYV9aeVpM973ULUUNsAjXZx94WTgnIqE8t75mJnvnbPED5UWim4mr_M1PuMcPZ2e6O2IS56Dzqqld-EJvXyb4AfMdt6Ig</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Eubank, Philip T</creator><creator>Elhassan, Ahmed E</creator><creator>Barrufet, Maria A</creator><creator>Whiting, Wallace B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920301</creationdate><title>Area method for prediction of fluid-phase equilibria</title><author>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>420400 - Engineering- Heat Transfer & Fluid Flow</topic><topic>BINARY MIXTURES</topic><topic>BUBBLES</topic><topic>CALCULATION METHODS</topic><topic>Chemistry</topic><topic>CRITICAL FLOW</topic><topic>DISPERSIONS</topic><topic>ENGINEERING</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>FUELS</topic><topic>General and physical chemistry</topic><topic>HIGH PRESSURE</topic><topic>LIQUID FUELS</topic><topic>MIXTURES</topic><topic>Phase equilibria</topic><topic>PHASE STUDIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eubank, Philip T</creatorcontrib><creatorcontrib>Elhassan, Ahmed E</creatorcontrib><creatorcontrib>Barrufet, Maria A</creatorcontrib><creatorcontrib>Whiting, Wallace B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eubank, Philip T</au><au>Elhassan, Ahmed E</au><au>Barrufet, Maria A</au><au>Whiting, Wallace B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area method for prediction of fluid-phase equilibria</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1992-03-01</date><risdate>1992</risdate><volume>31</volume><issue>3</issue><spage>942</spage><epage>949</epage><pages>942-949</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00003a041</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1992-03, Vol.31 (3), p.942-949 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_5320667 |
source | ACS CRKN Legacy Archives |
subjects | 420400 - Engineering- Heat Transfer & Fluid Flow BINARY MIXTURES BUBBLES CALCULATION METHODS Chemistry CRITICAL FLOW DISPERSIONS ENGINEERING EQUATIONS EQUATIONS OF STATE EQUILIBRIUM Exact sciences and technology FLUID FLOW FUELS General and physical chemistry HIGH PRESSURE LIQUID FUELS MIXTURES Phase equilibria PHASE STUDIES |
title | Area method for prediction of fluid-phase equilibria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area%20method%20for%20prediction%20of%20fluid-phase%20equilibria&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Eubank,%20Philip%20T&rft.date=1992-03-01&rft.volume=31&rft.issue=3&rft.spage=942&rft.epage=949&rft.pages=942-949&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00003a041&rft_dat=%3Cacs_osti_%3Ec714427327%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |