Loading…

Area method for prediction of fluid-phase equilibria

This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, th...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 1992-03, Vol.31 (3), p.942-949
Main Authors: Eubank, Philip T, Elhassan, Ahmed E, Barrufet, Maria A, Whiting, Wallace B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543
cites
container_end_page 949
container_issue 3
container_start_page 942
container_title Industrial & engineering chemistry research
container_volume 31
creator Eubank, Philip T
Elhassan, Ahmed E
Barrufet, Maria A
Whiting, Wallace B
description This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.
doi_str_mv 10.1021/ie00003a041
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5320667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c714427327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgCs7pyS9QRPAg1SRNmuw4518YKGyCeAnv0oRldk1NOtBvb0ZleDCXHPLL-z48CJ0SfEUwJdfO4HQKwIzsoQHhFOccM76PBlhKmXMp-SE6inGVFOeMDRAbBwPZ2nRLX2XWh6wNpnK6c77JvM1svXFV3i4hmsx8blztFsHBMTqwUEdz8nsP0ev93XzymE-fH54m42kOxajocmEXmEoutSAV4UaIkhuwsKAjkIQxQVlVlgkQk4ItpChKMBSIZLiSZMRZMURn_VwfO6eidp3RS-2bxuhO8YLishQJXfZIBx9jMFa1wa0hfCuC1bYV9aeVpM973ULUUNsAjXZx94WTgnIqE8t75mJnvnbPED5UWim4mr_M1PuMcPZ2e6O2IS56Dzqqld-EJvXyb4AfMdt6Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Area method for prediction of fluid-phase equilibria</title><source>ACS CRKN Legacy Archives</source><creator>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</creator><creatorcontrib>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</creatorcontrib><description>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00003a041</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>420400 - Engineering- Heat Transfer &amp; Fluid Flow ; BINARY MIXTURES ; BUBBLES ; CALCULATION METHODS ; Chemistry ; CRITICAL FLOW ; DISPERSIONS ; ENGINEERING ; EQUATIONS ; EQUATIONS OF STATE ; EQUILIBRIUM ; Exact sciences and technology ; FLUID FLOW ; FUELS ; General and physical chemistry ; HIGH PRESSURE ; LIQUID FUELS ; MIXTURES ; Phase equilibria ; PHASE STUDIES</subject><ispartof>Industrial &amp; engineering chemistry research, 1992-03, Vol.31 (3), p.942-949</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00003a041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00003a041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27064,27924,27925,56766,56816</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5132528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5320667$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eubank, Philip T</creatorcontrib><creatorcontrib>Elhassan, Ahmed E</creatorcontrib><creatorcontrib>Barrufet, Maria A</creatorcontrib><creatorcontrib>Whiting, Wallace B</creatorcontrib><title>Area method for prediction of fluid-phase equilibria</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</description><subject>420400 - Engineering- Heat Transfer &amp; Fluid Flow</subject><subject>BINARY MIXTURES</subject><subject>BUBBLES</subject><subject>CALCULATION METHODS</subject><subject>Chemistry</subject><subject>CRITICAL FLOW</subject><subject>DISPERSIONS</subject><subject>ENGINEERING</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>FUELS</subject><subject>General and physical chemistry</subject><subject>HIGH PRESSURE</subject><subject>LIQUID FUELS</subject><subject>MIXTURES</subject><subject>Phase equilibria</subject><subject>PHASE STUDIES</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpt0E9LwzAYBvAgCs7pyS9QRPAg1SRNmuw4518YKGyCeAnv0oRldk1NOtBvb0ZleDCXHPLL-z48CJ0SfEUwJdfO4HQKwIzsoQHhFOccM76PBlhKmXMp-SE6inGVFOeMDRAbBwPZ2nRLX2XWh6wNpnK6c77JvM1svXFV3i4hmsx8blztFsHBMTqwUEdz8nsP0ev93XzymE-fH54m42kOxajocmEXmEoutSAV4UaIkhuwsKAjkIQxQVlVlgkQk4ItpChKMBSIZLiSZMRZMURn_VwfO6eidp3RS-2bxuhO8YLishQJXfZIBx9jMFa1wa0hfCuC1bYV9aeVpM973ULUUNsAjXZx94WTgnIqE8t75mJnvnbPED5UWim4mr_M1PuMcPZ2e6O2IS56Dzqqld-EJvXyb4AfMdt6Ig</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Eubank, Philip T</creator><creator>Elhassan, Ahmed E</creator><creator>Barrufet, Maria A</creator><creator>Whiting, Wallace B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920301</creationdate><title>Area method for prediction of fluid-phase equilibria</title><author>Eubank, Philip T ; Elhassan, Ahmed E ; Barrufet, Maria A ; Whiting, Wallace B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>420400 - Engineering- Heat Transfer &amp; Fluid Flow</topic><topic>BINARY MIXTURES</topic><topic>BUBBLES</topic><topic>CALCULATION METHODS</topic><topic>Chemistry</topic><topic>CRITICAL FLOW</topic><topic>DISPERSIONS</topic><topic>ENGINEERING</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>FUELS</topic><topic>General and physical chemistry</topic><topic>HIGH PRESSURE</topic><topic>LIQUID FUELS</topic><topic>MIXTURES</topic><topic>Phase equilibria</topic><topic>PHASE STUDIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eubank, Philip T</creatorcontrib><creatorcontrib>Elhassan, Ahmed E</creatorcontrib><creatorcontrib>Barrufet, Maria A</creatorcontrib><creatorcontrib>Whiting, Wallace B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eubank, Philip T</au><au>Elhassan, Ahmed E</au><au>Barrufet, Maria A</au><au>Whiting, Wallace B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area method for prediction of fluid-phase equilibria</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1992-03-01</date><risdate>1992</risdate><volume>31</volume><issue>3</issue><spage>942</spage><epage>949</epage><pages>942-949</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper reports on a new method developed to predict and calculate phase equilibria from equations of state for binary and ternary fluid mixtures to high pressures, including the critical and retrograde regions. The method minimizes the Gibbs energy by integrating, rather than differentiating, the Gibbs energy curve. The area method provides a sufficient condition for global Gibbs energy minimization, rather than only the necessary condition provided by the tangent-plane methods. The area method performs well along phase boundaries and has approached mixture critical points to within 10 mK from both the bubble and dew point curves. Cricondentherm temperatures have been calculated to within 10 nK and pressures within 0.1 mbar. The area method has been tested with several binary systems, including a three-phase system. An example further shows how the method may be extended to a ternary system. The results are in good agreement with examples from the literature, which used previous Gibbs minimization techniques.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00003a041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1992-03, Vol.31 (3), p.942-949
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_5320667
source ACS CRKN Legacy Archives
subjects 420400 - Engineering- Heat Transfer & Fluid Flow
BINARY MIXTURES
BUBBLES
CALCULATION METHODS
Chemistry
CRITICAL FLOW
DISPERSIONS
ENGINEERING
EQUATIONS
EQUATIONS OF STATE
EQUILIBRIUM
Exact sciences and technology
FLUID FLOW
FUELS
General and physical chemistry
HIGH PRESSURE
LIQUID FUELS
MIXTURES
Phase equilibria
PHASE STUDIES
title Area method for prediction of fluid-phase equilibria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area%20method%20for%20prediction%20of%20fluid-phase%20equilibria&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Eubank,%20Philip%20T&rft.date=1992-03-01&rft.volume=31&rft.issue=3&rft.spage=942&rft.epage=949&rft.pages=942-949&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00003a041&rft_dat=%3Cacs_osti_%3Ec714427327%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a393t-7fb02858c71d15e7765eafab29a8144724d662851e588b8736ae2a1840d819543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true