Loading…

Mechanism of continuous-phase mass transfer in agitated liquid-liquid systems

In this paper data are reported on 180 area-free, continuous-phase mass-transfer coefficients for 9 turbine-agitated liquid-liquid systems in baffled vessels. Criteria are established that identify the prevailing class of mass-transfer mechanisms for systems of intermediate or high interfacial tensi...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 1990-11, Vol.29 (11), p.2258-2267
Main Authors: Skelland, A. H. P, Moeti, L. T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper data are reported on 180 area-free, continuous-phase mass-transfer coefficients for 9 turbine-agitated liquid-liquid systems in baffled vessels. Criteria are established that identify the prevailing class of mass-transfer mechanisms for systems of intermediate or high interfacial tension with low {phi}---namely, k{sub c} {proportional to} D{sub c}{sup 2/3} {mu}{sub c}{sup {minus}1/3} N{sup 3/2}. It is also deduced that k{sub c} {proportional to} d{sub p}{sup 0} for the combined ranges of d{sub p}, {Delta}{rho}, and {mu}{sub c} investigated. A subsidiary result is the correlation of the k{sub c} values obtained, on the basis of local isotropic turbulence theory for the inertial subrange of eddy sizes.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie00107a010