Loading…

Cloning and characterization of root-specific barley lectin

Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNA library was constructed and a clone (BLc3) for barley lectin was...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1989-09, Vol.91 (1), p.124-129
Main Authors: Lerner, D.R. (Michigan State University, East Lansing, MI), Raikhel, N.V
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNA library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identify to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A+) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA kin poly(A+) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.91.1.124