Loading…

Ceramic Component Processing Development for Advanced Gas Turbine Engines

Norton/TRW Ceramics (NTC) is developing ceramic components as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms, and scrolls. The first three components are bein...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering for gas turbines and power 1993-01, Vol.115 (1), p.1-8
Main Authors: McEntire, B. J, Hengst, R. R, Collins, W. T, Taglialavore, A. P, Yeckley, R. L
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Norton/TRW Ceramics (NTC) is developing ceramic components as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms, and scrolls. The first three components are being produced from a HIPed Si3N4, designated NT154. Scrolls were prepared from a series of siliconized silicon-carbide (Si-SiC) materials designated NT235 and NT230. Efforts during the first three years of this five-year program are reported. Developmental work has been conducted on all aspects of the fabrication process using Taguchi experimental design techniques. Appropriate materials and processing conditions were selected for power beneficiation, densification, and heat-treatment operations. Component forming has been conducted using thermal-plastic-based injection molding (IM), pressure slip-casting (PSC), and Quick-Set™ injection molding.1 An assessment of material properties for various components from each material and process were made. For NT154, characteristic room-temperature strengths and Weibull Moduli were found to range between ≈920 MPa to ≈1 GPa and ≈10 to ≈19, respectively. Process-induced inclusions proved to be the dominant strength-limiting defect regardless of the chosen forming method. Correction of the lower observed values is being addressed through equipment changes and upgrades. For the NT230 and NT235 Si-SiC, characteristic room-temperature strengths and Weibull Moduli ranged from ≈240 to ≈420 MPa, and 8 to 10, respectively. At 1370°C, strength values for both the HIPed Si3N4 and the Si-SiC materials ranged from ≈480 MPa to ≈690 MPa. The durability of these materials as engine components is currently being evaluated.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.2906678