Loading…

Hydrogen dynamics in a-Si :H : multiple trapping, structural relaxation, and the Meyer-Neldel relation

The power-law time-dependent diffusion constant {ital D}({ital t})={ital D}{sub 00}({omega}{ital t}){sup {minus}{alpha}} was measured in undoped hydrogenated amorphous silicon of varying H content (H{sub {ital t}}), diffusion length {ital L}, and microvoid content at temperatures {ital T}{le}400 {de...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter Condensed matter, 1991-01, Vol.43 (2), p.1631-1636
Main Authors: SHINAR, J, SHINAR, R, WU, X.-L, MITRA, S, GIRVAN, R. F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The power-law time-dependent diffusion constant {ital D}({ital t})={ital D}{sub 00}({omega}{ital t}){sup {minus}{alpha}} was measured in undoped hydrogenated amorphous silicon of varying H content (H{sub {ital t}}), diffusion length {ital L}, and microvoid content at temperatures {ital T}{le}400 {degree}C. {alpha} generally deviates from a 1{minus}{ital T}/{ital T}{sub 0} dependence on the temperature {ital T}. The temperature dependence of {ital D}({ital t}{sub {ital L}}), for constant {ital L}, thus deviates from an Arrhenius behavior. The apparent'' activation energy {ital E}{sub {ital a}} and prefactor {ital D}{sub 0}, defined by the linear best fit of ln{ital D}({ital t}{sub {ital L}}) versus 1/{ital T}, strongly increase with {ital L} at low (H{sub {ital t}}). The Meyer-Neldel relation {ital D}{sub 0} ={ital A}{sub 00} exp({ital E}{sub {ital a}}/{ital kT}{sub 0}{sup {prime}}), where {ital A}{sub 00}{congruent}3.1{times}10{sup {minus}14} cm{sup 2}/s and {ital T}{sub 0}{sup {prime}}{congruent}30 K, holds for all 1.3{le}{ital E}{sub {ital a}}{le}2.4 eV and 2.5{times}10{sup {minus}5}{le}{ital D}{sub 0}{le}3100 cm{sup 2}/s. Structural relaxation processes dependent on H content are believed to affect {alpha}. The nature of the microvoid-related deep H-trapping sites is also discussed.
ISSN:0163-1829
1095-3795
DOI:10.1103/PhysRevB.43.1631