Loading…
From Force Fields to Dynamics: Classical and Quantal Paths
Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hy...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1990-08, Vol.249 (4968), p.491-498 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663 |
container_end_page | 498 |
container_issue | 4968 |
container_start_page | 491 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 249 |
creator | Truhlar, Donald G. Gordon, Mark S. |
description | Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples. |
doi_str_mv | 10.1126/science.249.4968.491 |
format | article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6170394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A9353345</galeid><jstor_id>2874488</jstor_id><sourcerecordid>A9353345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4Mo9qz-B0UWofggeyaZ_OxbOT0VClXQ5xCz2XaP3aQmWbD_vTl26T36MgnMZ2a-M1-ELgjeEkLFx-wGH5zfUqa3TAtVA3mGNgRr3mqK4TnaYAyiVVjyM_Qq5wPGNafhJTojUgKnim7Q1T7FqdnH5HyzH_zY5abE5tNjsNPg8lWzG23Og7NjY0PX_JhtKPX_3Zb7_Bq96O2Y_Zv1PUe_9p9_7r62N7dfvu2ub1rHJZRWOxCs07iT3GsLnZJEdhpoTxw4KqlWlOreCpBeCCUotwqcU1YLqXsuBJyjd0vfmMtg6trFu3sXQ_CuGEEkBs0q9H6BHlL8M_tczDRk58fRBh_nbCQDiilm6v8kAKn3k-w0-Ik8xDmFuquhBDgDro_qPizQnR29GUIVVvzf4uI4-jtv6iV2t-ZaAwdgvNJsoV2KOSffm4c0TDY9GoLN0Vaz2mqqreZoaw2klr1dlcy_J9-dilYfK3C5AjZXs_pkgxvyidOMYUWPjS4W7pBLTE95qiRjSsE_4piw4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213543596</pqid></control><display><type>article</type><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><source>Social Science Premium Collection</source><source>Education Collection</source><source>Science Online科学在线</source><creator>Truhlar, Donald G. ; Gordon, Mark S.</creator><creatorcontrib>Truhlar, Donald G. ; Gordon, Mark S.</creatorcontrib><description>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.249.4968.491</identifier><identifier>PMID: 17735282</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>400201 - Chemical & Physicochemical Properties ; 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ; ATOMS ; CHEMICAL REACTION KINETICS ; CHEMICAL REACTIONS ; Chemistry ; Chemistry, Physical and theoretical ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coefficients ; Coordinate systems ; Curvature ; DATA ; Electronic structure ; Energy ; Exact sciences and technology ; EXPERIMENTAL DATA ; FLUIDS ; GASES ; General and physical chemistry ; INFORMATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; MOLECULES ; NUMERICAL DATA ; Physical chemistry ; Physics ; POLYATOMIC MOLECULES ; Potential energy ; Quantum tunneling ; Reactants ; REACTION KINETICS ; Saddle points ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Science (American Association for the Advancement of Science), 1990-08, Vol.249 (4968), p.491-498</ispartof><rights>Copyright 1990 American Association for the Advancement of Science</rights><rights>1991 INIST-CNRS</rights><rights>Copyright American Association for the Advancement of Science Aug 3, 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</citedby><cites>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213543596/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213543596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19440821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17735282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6170394$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Gordon, Mark S.</creatorcontrib><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</description><subject>400201 - Chemical & Physicochemical Properties</subject><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</subject><subject>ATOMS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>CHEMICAL REACTIONS</subject><subject>Chemistry</subject><subject>Chemistry, Physical and theoretical</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coefficients</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>DATA</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FLUIDS</subject><subject>GASES</subject><subject>General and physical chemistry</subject><subject>INFORMATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>MOLECULES</subject><subject>NUMERICAL DATA</subject><subject>Physical chemistry</subject><subject>Physics</subject><subject>POLYATOMIC MOLECULES</subject><subject>Potential energy</subject><subject>Quantum tunneling</subject><subject>Reactants</subject><subject>REACTION KINETICS</subject><subject>Saddle points</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqFkd9rFDEQx4Mo9qz-B0UWofggeyaZ_OxbOT0VClXQ5xCz2XaP3aQmWbD_vTl26T36MgnMZ2a-M1-ELgjeEkLFx-wGH5zfUqa3TAtVA3mGNgRr3mqK4TnaYAyiVVjyM_Qq5wPGNafhJTojUgKnim7Q1T7FqdnH5HyzH_zY5abE5tNjsNPg8lWzG23Og7NjY0PX_JhtKPX_3Zb7_Bq96O2Y_Zv1PUe_9p9_7r62N7dfvu2ub1rHJZRWOxCs07iT3GsLnZJEdhpoTxw4KqlWlOreCpBeCCUotwqcU1YLqXsuBJyjd0vfmMtg6trFu3sXQ_CuGEEkBs0q9H6BHlL8M_tczDRk58fRBh_nbCQDiilm6v8kAKn3k-w0-Ik8xDmFuquhBDgDro_qPizQnR29GUIVVvzf4uI4-jtv6iV2t-ZaAwdgvNJsoV2KOSffm4c0TDY9GoLN0Vaz2mqqreZoaw2klr1dlcy_J9-dilYfK3C5AjZXs_pkgxvyidOMYUWPjS4W7pBLTE95qiRjSsE_4piw4Q</recordid><startdate>19900803</startdate><enddate>19900803</enddate><creator>Truhlar, Donald G.</creator><creator>Gordon, Mark S.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19900803</creationdate><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><author>Truhlar, Donald G. ; Gordon, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>400201 - Chemical & Physicochemical Properties</topic><topic>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</topic><topic>ATOMS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>CHEMICAL REACTIONS</topic><topic>Chemistry</topic><topic>Chemistry, Physical and theoretical</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coefficients</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>DATA</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FLUIDS</topic><topic>GASES</topic><topic>General and physical chemistry</topic><topic>INFORMATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>MOLECULES</topic><topic>NUMERICAL DATA</topic><topic>Physical chemistry</topic><topic>Physics</topic><topic>POLYATOMIC MOLECULES</topic><topic>Potential energy</topic><topic>Quantum tunneling</topic><topic>Reactants</topic><topic>REACTION KINETICS</topic><topic>Saddle points</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Gordon, Mark S.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Education Database (ProQuest)</collection><collection>ProQuest Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truhlar, Donald G.</au><au>Gordon, Mark S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Force Fields to Dynamics: Classical and Quantal Paths</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1990-08-03</date><risdate>1990</risdate><volume>249</volume><issue>4968</issue><spage>491</spage><epage>498</epage><pages>491-498</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>17735282</pmid><doi>10.1126/science.249.4968.491</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1990-08, Vol.249 (4968), p.491-498 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_6170394 |
source | Social Science Premium Collection; Education Collection; Science Online科学在线 |
subjects | 400201 - Chemical & Physicochemical Properties 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ATOMS CHEMICAL REACTION KINETICS CHEMICAL REACTIONS Chemistry Chemistry, Physical and theoretical CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Coefficients Coordinate systems Curvature DATA Electronic structure Energy Exact sciences and technology EXPERIMENTAL DATA FLUIDS GASES General and physical chemistry INFORMATION INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY KINETICS MOLECULES NUMERICAL DATA Physical chemistry Physics POLYATOMIC MOLECULES Potential energy Quantum tunneling Reactants REACTION KINETICS Saddle points Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | From Force Fields to Dynamics: Classical and Quantal Paths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Force%20Fields%20to%20Dynamics:%20Classical%20and%20Quantal%20Paths&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Truhlar,%20Donald%20G.&rft.date=1990-08-03&rft.volume=249&rft.issue=4968&rft.spage=491&rft.epage=498&rft.pages=491-498&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.249.4968.491&rft_dat=%3Cgale_osti_%3EA9353345%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213543596&rft_id=info:pmid/17735282&rft_galeid=A9353345&rft_jstor_id=2874488&rfr_iscdi=true |