Loading…

From Force Fields to Dynamics: Classical and Quantal Paths

Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hy...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1990-08, Vol.249 (4968), p.491-498
Main Authors: Truhlar, Donald G., Gordon, Mark S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663
cites cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663
container_end_page 498
container_issue 4968
container_start_page 491
container_title Science (American Association for the Advancement of Science)
container_volume 249
creator Truhlar, Donald G.
Gordon, Mark S.
description Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.
doi_str_mv 10.1126/science.249.4968.491
format article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6170394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A9353345</galeid><jstor_id>2874488</jstor_id><sourcerecordid>A9353345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4Mo9qz-B0UWofggeyaZ_OxbOT0VClXQ5xCz2XaP3aQmWbD_vTl26T36MgnMZ2a-M1-ELgjeEkLFx-wGH5zfUqa3TAtVA3mGNgRr3mqK4TnaYAyiVVjyM_Qq5wPGNafhJTojUgKnim7Q1T7FqdnH5HyzH_zY5abE5tNjsNPg8lWzG23Og7NjY0PX_JhtKPX_3Zb7_Bq96O2Y_Zv1PUe_9p9_7r62N7dfvu2ub1rHJZRWOxCs07iT3GsLnZJEdhpoTxw4KqlWlOreCpBeCCUotwqcU1YLqXsuBJyjd0vfmMtg6trFu3sXQ_CuGEEkBs0q9H6BHlL8M_tczDRk58fRBh_nbCQDiilm6v8kAKn3k-w0-Ik8xDmFuquhBDgDro_qPizQnR29GUIVVvzf4uI4-jtv6iV2t-ZaAwdgvNJsoV2KOSffm4c0TDY9GoLN0Vaz2mqqreZoaw2klr1dlcy_J9-dilYfK3C5AjZXs_pkgxvyidOMYUWPjS4W7pBLTE95qiRjSsE_4piw4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213543596</pqid></control><display><type>article</type><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><source>Social Science Premium Collection</source><source>Education Collection</source><source>Science Online科学在线</source><creator>Truhlar, Donald G. ; Gordon, Mark S.</creator><creatorcontrib>Truhlar, Donald G. ; Gordon, Mark S.</creatorcontrib><description>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.249.4968.491</identifier><identifier>PMID: 17735282</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>400201 - Chemical &amp; Physicochemical Properties ; 657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; ATOMS ; CHEMICAL REACTION KINETICS ; CHEMICAL REACTIONS ; Chemistry ; Chemistry, Physical and theoretical ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coefficients ; Coordinate systems ; Curvature ; DATA ; Electronic structure ; Energy ; Exact sciences and technology ; EXPERIMENTAL DATA ; FLUIDS ; GASES ; General and physical chemistry ; INFORMATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; MOLECULES ; NUMERICAL DATA ; Physical chemistry ; Physics ; POLYATOMIC MOLECULES ; Potential energy ; Quantum tunneling ; Reactants ; REACTION KINETICS ; Saddle points ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Science (American Association for the Advancement of Science), 1990-08, Vol.249 (4968), p.491-498</ispartof><rights>Copyright 1990 American Association for the Advancement of Science</rights><rights>1991 INIST-CNRS</rights><rights>Copyright American Association for the Advancement of Science Aug 3, 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</citedby><cites>FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213543596/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213543596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,21378,21394,27924,27925,33611,33612,33877,33878,43733,43880,74221,74397</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19440821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17735282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6170394$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Gordon, Mark S.</creatorcontrib><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</description><subject>400201 - Chemical &amp; Physicochemical Properties</subject><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>ATOMS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>CHEMICAL REACTIONS</subject><subject>Chemistry</subject><subject>Chemistry, Physical and theoretical</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coefficients</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>DATA</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FLUIDS</subject><subject>GASES</subject><subject>General and physical chemistry</subject><subject>INFORMATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>MOLECULES</subject><subject>NUMERICAL DATA</subject><subject>Physical chemistry</subject><subject>Physics</subject><subject>POLYATOMIC MOLECULES</subject><subject>Potential energy</subject><subject>Quantum tunneling</subject><subject>Reactants</subject><subject>REACTION KINETICS</subject><subject>Saddle points</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNqFkd9rFDEQx4Mo9qz-B0UWofggeyaZ_OxbOT0VClXQ5xCz2XaP3aQmWbD_vTl26T36MgnMZ2a-M1-ELgjeEkLFx-wGH5zfUqa3TAtVA3mGNgRr3mqK4TnaYAyiVVjyM_Qq5wPGNafhJTojUgKnim7Q1T7FqdnH5HyzH_zY5abE5tNjsNPg8lWzG23Og7NjY0PX_JhtKPX_3Zb7_Bq96O2Y_Zv1PUe_9p9_7r62N7dfvu2ub1rHJZRWOxCs07iT3GsLnZJEdhpoTxw4KqlWlOreCpBeCCUotwqcU1YLqXsuBJyjd0vfmMtg6trFu3sXQ_CuGEEkBs0q9H6BHlL8M_tczDRk58fRBh_nbCQDiilm6v8kAKn3k-w0-Ik8xDmFuquhBDgDro_qPizQnR29GUIVVvzf4uI4-jtv6iV2t-ZaAwdgvNJsoV2KOSffm4c0TDY9GoLN0Vaz2mqqreZoaw2klr1dlcy_J9-dilYfK3C5AjZXs_pkgxvyidOMYUWPjS4W7pBLTE95qiRjSsE_4piw4Q</recordid><startdate>19900803</startdate><enddate>19900803</enddate><creator>Truhlar, Donald G.</creator><creator>Gordon, Mark S.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19900803</creationdate><title>From Force Fields to Dynamics: Classical and Quantal Paths</title><author>Truhlar, Donald G. ; Gordon, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>400201 - Chemical &amp; Physicochemical Properties</topic><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>ATOMS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>CHEMICAL REACTIONS</topic><topic>Chemistry</topic><topic>Chemistry, Physical and theoretical</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coefficients</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>DATA</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FLUIDS</topic><topic>GASES</topic><topic>General and physical chemistry</topic><topic>INFORMATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>MOLECULES</topic><topic>NUMERICAL DATA</topic><topic>Physical chemistry</topic><topic>Physics</topic><topic>POLYATOMIC MOLECULES</topic><topic>Potential energy</topic><topic>Quantum tunneling</topic><topic>Reactants</topic><topic>REACTION KINETICS</topic><topic>Saddle points</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Gordon, Mark S.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Education Database (ProQuest)</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truhlar, Donald G.</au><au>Gordon, Mark S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Force Fields to Dynamics: Classical and Quantal Paths</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1990-08-03</date><risdate>1990</risdate><volume>249</volume><issue>4968</issue><spage>491</spage><epage>498</epage><pages>491-498</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Reaction path methods provide a powerful tool for bridging the gap between electronic structure and chemical dynamics. Classical mechanical reaction paths may usually be understood in terms of the force field in the vicinity of a minimum energy path (MEP). When there is a significant component of hydrogenic motion along the MEP and a barrier much higher than the average energy of reactants, quantal tunneling paths must be considered, and these tend to be located on the corner-cutting side of the MEP. As the curvature of the MEP in mass-scaled coordinates is increased, the quantal reaction paths may deviate considerably from the classical ones, and the force field must be mapped out over a wider region, called the reaction swath. The required force fields may be represented by global or semiglobal analytic functions, or the dynamics may be computed "directly" from the electronic structure results without the intermediacy of potential energy functions. Applications to atom and diatom reactions in the gas phase and at gas-solid interfaces and to reactions of polyatomic molecules in the gas phase, in clusters, and in aqueous solution are discussed as examples.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>17735282</pmid><doi>10.1126/science.249.4968.491</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1990-08, Vol.249 (4968), p.491-498
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_6170394
source Social Science Premium Collection; Education Collection; Science Online科学在线
subjects 400201 - Chemical & Physicochemical Properties
657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
ATOMS
CHEMICAL REACTION KINETICS
CHEMICAL REACTIONS
Chemistry
Chemistry, Physical and theoretical
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coefficients
Coordinate systems
Curvature
DATA
Electronic structure
Energy
Exact sciences and technology
EXPERIMENTAL DATA
FLUIDS
GASES
General and physical chemistry
INFORMATION
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
KINETICS
MOLECULES
NUMERICAL DATA
Physical chemistry
Physics
POLYATOMIC MOLECULES
Potential energy
Quantum tunneling
Reactants
REACTION KINETICS
Saddle points
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title From Force Fields to Dynamics: Classical and Quantal Paths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Force%20Fields%20to%20Dynamics:%20Classical%20and%20Quantal%20Paths&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Truhlar,%20Donald%20G.&rft.date=1990-08-03&rft.volume=249&rft.issue=4968&rft.spage=491&rft.epage=498&rft.pages=491-498&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.249.4968.491&rft_dat=%3Cgale_osti_%3EA9353345%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-9c364d90d75e9a3d8717d932f1c3c27298229fa637e668625a83cc8a9679f5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213543596&rft_id=info:pmid/17735282&rft_galeid=A9353345&rft_jstor_id=2874488&rfr_iscdi=true