Loading…
Sn deposition on Ru(001) : a multitechnique surface science study
Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670...
Saved in:
Published in: | Journal of physical chemistry (1952) 1993-01, Vol.97 (3), p.690-695 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 695 |
container_issue | 3 |
container_start_page | 690 |
container_title | Journal of physical chemistry (1952) |
container_volume | 97 |
creator | PAFFETT, M. T DAVID LOGAN, A TAYLOR, T. N |
description | Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] > 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs. |
doi_str_mv | 10.1021/j100105a026 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6200800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4627814</sourcerecordid><originalsourceid>FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53</originalsourceid><addsrcrecordid>eNotjktLxDAUhYMoWEdX_oEiLnRRvTdJm467YfAFA4KPdblNUs0wk9YmXcy_N8MIBz4O9-NyGLtEuEPgeL9GAISSgFdHLMNSYlEqCccsA-C8EFUpT9lZCGtInhCYscWHz40d-uCi632e8j7dpONt_pBTvp020UWrf7z7nWweprEjnaid9XvGyezO2UlHm2Av_jljX0-Pn8uXYvX2_LpcrIpvLlUsNM6xEgpUbcjOhbZoiNctWWUl6VaJllopsFSkkTrNTSoGK5N81SGVYsauDn_7EF2TJux36d57q2NTcYAaIEnXB2mgoGnTjeS1C80wui2Nu0ZWXNUoxR-Irlap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><source>ACS CRKN Legacy Archives</source><creator>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</creator><creatorcontrib>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</creatorcontrib><description>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] > 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/j100105a026</identifier><identifier>CODEN: JPCHAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>360102 -- Metals & Alloys-- Structure & Phase Studies ; ALLOYS ; ANNEALING ; Applied sciences ; AUGER ELECTRON SPECTROSCOPY ; COHERENT SCATTERING ; Condensed matter: structure, mechanical and thermal properties ; DEPOSITION ; DIFFRACTION ; ELECTRON DIFFRACTION ; ELECTRON SPECTROSCOPY ; ELEMENTS ; Exact sciences and technology ; GROWTH ; HEAT TREATMENTS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LAYERS ; MATERIALS SCIENCE ; METALS ; Metals. Metallurgy ; MILLER INDICES ; MOLECULAR STRUCTURE ; NUCLEATION ; Physics ; PLATINUM METALS ; RUTHENIUM ; SCATTERING ; Solid surfaces and solid-solid interfaces ; SPECTROSCOPY ; Surface structure and topography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; TIN ; TRANSITION ELEMENTS 400201 -- Chemical & Physicochemical Properties</subject><ispartof>Journal of physical chemistry (1952), 1993-01, Vol.97 (3), p.690-695</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4627814$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6200800$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PAFFETT, M. T</creatorcontrib><creatorcontrib>DAVID LOGAN, A</creatorcontrib><creatorcontrib>TAYLOR, T. N</creatorcontrib><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><title>Journal of physical chemistry (1952)</title><description>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] > 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</description><subject>360102 -- Metals & Alloys-- Structure & Phase Studies</subject><subject>ALLOYS</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>AUGER ELECTRON SPECTROSCOPY</subject><subject>COHERENT SCATTERING</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DEPOSITION</subject><subject>DIFFRACTION</subject><subject>ELECTRON DIFFRACTION</subject><subject>ELECTRON SPECTROSCOPY</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>GROWTH</subject><subject>HEAT TREATMENTS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Metals. Metallurgy</subject><subject>MILLER INDICES</subject><subject>MOLECULAR STRUCTURE</subject><subject>NUCLEATION</subject><subject>Physics</subject><subject>PLATINUM METALS</subject><subject>RUTHENIUM</subject><subject>SCATTERING</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>SPECTROSCOPY</subject><subject>Surface structure and topography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>TIN</subject><subject>TRANSITION ELEMENTS 400201 -- Chemical & Physicochemical Properties</subject><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNotjktLxDAUhYMoWEdX_oEiLnRRvTdJm467YfAFA4KPdblNUs0wk9YmXcy_N8MIBz4O9-NyGLtEuEPgeL9GAISSgFdHLMNSYlEqCccsA-C8EFUpT9lZCGtInhCYscWHz40d-uCi632e8j7dpONt_pBTvp020UWrf7z7nWweprEjnaid9XvGyezO2UlHm2Av_jljX0-Pn8uXYvX2_LpcrIpvLlUsNM6xEgpUbcjOhbZoiNctWWUl6VaJllopsFSkkTrNTSoGK5N81SGVYsauDn_7EF2TJux36d57q2NTcYAaIEnXB2mgoGnTjeS1C80wui2Nu0ZWXNUoxR-Irlap</recordid><startdate>19930121</startdate><enddate>19930121</enddate><creator>PAFFETT, M. T</creator><creator>DAVID LOGAN, A</creator><creator>TAYLOR, T. N</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>19930121</creationdate><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><author>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360102 -- Metals & Alloys-- Structure & Phase Studies</topic><topic>ALLOYS</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>AUGER ELECTRON SPECTROSCOPY</topic><topic>COHERENT SCATTERING</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DEPOSITION</topic><topic>DIFFRACTION</topic><topic>ELECTRON DIFFRACTION</topic><topic>ELECTRON SPECTROSCOPY</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>GROWTH</topic><topic>HEAT TREATMENTS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Metals. Metallurgy</topic><topic>MILLER INDICES</topic><topic>MOLECULAR STRUCTURE</topic><topic>NUCLEATION</topic><topic>Physics</topic><topic>PLATINUM METALS</topic><topic>RUTHENIUM</topic><topic>SCATTERING</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>SPECTROSCOPY</topic><topic>Surface structure and topography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>TIN</topic><topic>TRANSITION ELEMENTS 400201 -- Chemical & Physicochemical Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAFFETT, M. T</creatorcontrib><creatorcontrib>DAVID LOGAN, A</creatorcontrib><creatorcontrib>TAYLOR, T. N</creatorcontrib><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAFFETT, M. T</au><au>DAVID LOGAN, A</au><au>TAYLOR, T. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sn deposition on Ru(001) : a multitechnique surface science study</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><date>1993-01-21</date><risdate>1993</risdate><volume>97</volume><issue>3</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><coden>JPCHAX</coden><abstract>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] > 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/j100105a026</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3654 |
ispartof | Journal of physical chemistry (1952), 1993-01, Vol.97 (3), p.690-695 |
issn | 0022-3654 1541-5740 |
language | eng |
recordid | cdi_osti_scitechconnect_6200800 |
source | ACS CRKN Legacy Archives |
subjects | 360102 -- Metals & Alloys-- Structure & Phase Studies ALLOYS ANNEALING Applied sciences AUGER ELECTRON SPECTROSCOPY COHERENT SCATTERING Condensed matter: structure, mechanical and thermal properties DEPOSITION DIFFRACTION ELECTRON DIFFRACTION ELECTRON SPECTROSCOPY ELEMENTS Exact sciences and technology GROWTH HEAT TREATMENTS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LAYERS MATERIALS SCIENCE METALS Metals. Metallurgy MILLER INDICES MOLECULAR STRUCTURE NUCLEATION Physics PLATINUM METALS RUTHENIUM SCATTERING Solid surfaces and solid-solid interfaces SPECTROSCOPY Surface structure and topography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) TIN TRANSITION ELEMENTS 400201 -- Chemical & Physicochemical Properties |
title | Sn deposition on Ru(001) : a multitechnique surface science study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sn%20deposition%20on%20Ru(001)%20:%20a%20multitechnique%20surface%20science%20study&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=PAFFETT,%20M.%20T&rft.date=1993-01-21&rft.volume=97&rft.issue=3&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=0022-3654&rft.eissn=1541-5740&rft.coden=JPCHAX&rft_id=info:doi/10.1021/j100105a026&rft_dat=%3Cpascalfrancis_osti_%3E4627814%3C/pascalfrancis_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |