Loading…

Sn deposition on Ru(001) : a multitechnique surface science study

Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry (1952) 1993-01, Vol.97 (3), p.690-695
Main Authors: PAFFETT, M. T, DAVID LOGAN, A, TAYLOR, T. N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 695
container_issue 3
container_start_page 690
container_title Journal of physical chemistry (1952)
container_volume 97
creator PAFFETT, M. T
DAVID LOGAN, A
TAYLOR, T. N
description Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] > 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.
doi_str_mv 10.1021/j100105a026
format article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6200800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4627814</sourcerecordid><originalsourceid>FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53</originalsourceid><addsrcrecordid>eNotjktLxDAUhYMoWEdX_oEiLnRRvTdJm467YfAFA4KPdblNUs0wk9YmXcy_N8MIBz4O9-NyGLtEuEPgeL9GAISSgFdHLMNSYlEqCccsA-C8EFUpT9lZCGtInhCYscWHz40d-uCi632e8j7dpONt_pBTvp020UWrf7z7nWweprEjnaid9XvGyezO2UlHm2Av_jljX0-Pn8uXYvX2_LpcrIpvLlUsNM6xEgpUbcjOhbZoiNctWWUl6VaJllopsFSkkTrNTSoGK5N81SGVYsauDn_7EF2TJux36d57q2NTcYAaIEnXB2mgoGnTjeS1C80wui2Nu0ZWXNUoxR-Irlap</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><source>ACS CRKN Legacy Archives</source><creator>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</creator><creatorcontrib>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</creatorcontrib><description>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] &gt; 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/j100105a026</identifier><identifier>CODEN: JPCHAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>360102 -- Metals &amp; Alloys-- Structure &amp; Phase Studies ; ALLOYS ; ANNEALING ; Applied sciences ; AUGER ELECTRON SPECTROSCOPY ; COHERENT SCATTERING ; Condensed matter: structure, mechanical and thermal properties ; DEPOSITION ; DIFFRACTION ; ELECTRON DIFFRACTION ; ELECTRON SPECTROSCOPY ; ELEMENTS ; Exact sciences and technology ; GROWTH ; HEAT TREATMENTS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LAYERS ; MATERIALS SCIENCE ; METALS ; Metals. Metallurgy ; MILLER INDICES ; MOLECULAR STRUCTURE ; NUCLEATION ; Physics ; PLATINUM METALS ; RUTHENIUM ; SCATTERING ; Solid surfaces and solid-solid interfaces ; SPECTROSCOPY ; Surface structure and topography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; TIN ; TRANSITION ELEMENTS 400201 -- Chemical &amp; Physicochemical Properties</subject><ispartof>Journal of physical chemistry (1952), 1993-01, Vol.97 (3), p.690-695</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4627814$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6200800$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PAFFETT, M. T</creatorcontrib><creatorcontrib>DAVID LOGAN, A</creatorcontrib><creatorcontrib>TAYLOR, T. N</creatorcontrib><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><title>Journal of physical chemistry (1952)</title><description>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] &gt; 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</description><subject>360102 -- Metals &amp; Alloys-- Structure &amp; Phase Studies</subject><subject>ALLOYS</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>AUGER ELECTRON SPECTROSCOPY</subject><subject>COHERENT SCATTERING</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DEPOSITION</subject><subject>DIFFRACTION</subject><subject>ELECTRON DIFFRACTION</subject><subject>ELECTRON SPECTROSCOPY</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>GROWTH</subject><subject>HEAT TREATMENTS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Metals. Metallurgy</subject><subject>MILLER INDICES</subject><subject>MOLECULAR STRUCTURE</subject><subject>NUCLEATION</subject><subject>Physics</subject><subject>PLATINUM METALS</subject><subject>RUTHENIUM</subject><subject>SCATTERING</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>SPECTROSCOPY</subject><subject>Surface structure and topography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>TIN</subject><subject>TRANSITION ELEMENTS 400201 -- Chemical &amp; Physicochemical Properties</subject><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNotjktLxDAUhYMoWEdX_oEiLnRRvTdJm467YfAFA4KPdblNUs0wk9YmXcy_N8MIBz4O9-NyGLtEuEPgeL9GAISSgFdHLMNSYlEqCccsA-C8EFUpT9lZCGtInhCYscWHz40d-uCi632e8j7dpONt_pBTvp020UWrf7z7nWweprEjnaid9XvGyezO2UlHm2Av_jljX0-Pn8uXYvX2_LpcrIpvLlUsNM6xEgpUbcjOhbZoiNctWWUl6VaJllopsFSkkTrNTSoGK5N81SGVYsauDn_7EF2TJux36d57q2NTcYAaIEnXB2mgoGnTjeS1C80wui2Nu0ZWXNUoxR-Irlap</recordid><startdate>19930121</startdate><enddate>19930121</enddate><creator>PAFFETT, M. T</creator><creator>DAVID LOGAN, A</creator><creator>TAYLOR, T. N</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>19930121</creationdate><title>Sn deposition on Ru(001) : a multitechnique surface science study</title><author>PAFFETT, M. T ; DAVID LOGAN, A ; TAYLOR, T. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360102 -- Metals &amp; Alloys-- Structure &amp; Phase Studies</topic><topic>ALLOYS</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>AUGER ELECTRON SPECTROSCOPY</topic><topic>COHERENT SCATTERING</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DEPOSITION</topic><topic>DIFFRACTION</topic><topic>ELECTRON DIFFRACTION</topic><topic>ELECTRON SPECTROSCOPY</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>GROWTH</topic><topic>HEAT TREATMENTS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Metals. Metallurgy</topic><topic>MILLER INDICES</topic><topic>MOLECULAR STRUCTURE</topic><topic>NUCLEATION</topic><topic>Physics</topic><topic>PLATINUM METALS</topic><topic>RUTHENIUM</topic><topic>SCATTERING</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>SPECTROSCOPY</topic><topic>Surface structure and topography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>TIN</topic><topic>TRANSITION ELEMENTS 400201 -- Chemical &amp; Physicochemical Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAFFETT, M. T</creatorcontrib><creatorcontrib>DAVID LOGAN, A</creatorcontrib><creatorcontrib>TAYLOR, T. N</creatorcontrib><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAFFETT, M. T</au><au>DAVID LOGAN, A</au><au>TAYLOR, T. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sn deposition on Ru(001) : a multitechnique surface science study</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><date>1993-01-21</date><risdate>1993</risdate><volume>97</volume><issue>3</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><coden>JPCHAX</coden><abstract>Tin deposition on the Ru(001) surface was studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and low-energy ion scattering spectroscopy (LEISS). Tin deposition (AES signal intensity) versus time plots obtained over the substrate temperature (T[sub s]) range 330-670 K indicate that the Sn adatoms exhibit several different deposition growth modes. At T[sub s] = 330 K the Sn deposition follows a Stranski-Kranstanov growth mode (uniform monolayer followed by three-dimensional growth). Two LEED patterns are seen for T[sub s] = 330 K Sn depositions that are interpreted in terms of ordered Sn overlayers in the submonolayer coverage regime. For Sn depositions at T[sub s] = 500 K the Sn overlayer growth is also approximated by a Stranski-Kranstanov growth mode with the second and subsequent layers exhibiting less three-dimensional nucleation than at 330 K. For specific Sn depositions at T[sub s] &gt; 600 K and upon annealing to 1,000 K, ordered surfaces with ([radical]3[times][radical]3)R30[degrees] and p(2[times]2) LEED patterns are obtained depending upon initial Sn precoverages and annealing temperatures and are suggested to arise from surface alloys. LEISS data indicate that the ([radical]3[times][radical]3)R30[degrees] surface alloy has a surface SnRu atom ratio of 2:1. 30 refs., 8 figs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/j100105a026</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3654
ispartof Journal of physical chemistry (1952), 1993-01, Vol.97 (3), p.690-695
issn 0022-3654
1541-5740
language eng
recordid cdi_osti_scitechconnect_6200800
source ACS CRKN Legacy Archives
subjects 360102 -- Metals & Alloys-- Structure & Phase Studies
ALLOYS
ANNEALING
Applied sciences
AUGER ELECTRON SPECTROSCOPY
COHERENT SCATTERING
Condensed matter: structure, mechanical and thermal properties
DEPOSITION
DIFFRACTION
ELECTRON DIFFRACTION
ELECTRON SPECTROSCOPY
ELEMENTS
Exact sciences and technology
GROWTH
HEAT TREATMENTS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LAYERS
MATERIALS SCIENCE
METALS
Metals. Metallurgy
MILLER INDICES
MOLECULAR STRUCTURE
NUCLEATION
Physics
PLATINUM METALS
RUTHENIUM
SCATTERING
Solid surfaces and solid-solid interfaces
SPECTROSCOPY
Surface structure and topography
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
TIN
TRANSITION ELEMENTS 400201 -- Chemical & Physicochemical Properties
title Sn deposition on Ru(001) : a multitechnique surface science study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sn%20deposition%20on%20Ru(001)%20:%20a%20multitechnique%20surface%20science%20study&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=PAFFETT,%20M.%20T&rft.date=1993-01-21&rft.volume=97&rft.issue=3&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=0022-3654&rft.eissn=1541-5740&rft.coden=JPCHAX&rft_id=info:doi/10.1021/j100105a026&rft_dat=%3Cpascalfrancis_osti_%3E4627814%3C/pascalfrancis_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g247t-c191637078dae93ce1da28bae7e4acb73bab43157ac1afc2d431d16d78d7f1a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true