Loading…

Rotational-resolved pulsed field ionization photoelectron study of NO[sup +](X [sup 1][Sigma][sup +],v[sup +]=0[endash]32) in the energy range of 9. 24[endash]16. 80 eV

We have obtained rotationally resolved pulsed filed ionization photoelectron (PFI-PE) spectra of NO in the energy range of 9.2[endash]16.8 eV, covering ionization transitions of NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=0[endash]32,J[sup +])[l arrow]NO(X hthinsp;[sup 2][Pi][sub 3/2,1/2],v[s...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1999-08, Vol.111:7
Main Authors: Jarvis, G.K., Evans, M., Ng, C.Y., Mitsuke, K.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have obtained rotationally resolved pulsed filed ionization photoelectron (PFI-PE) spectra of NO in the energy range of 9.2[endash]16.8 eV, covering ionization transitions of NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=0[endash]32,J[sup +])[l arrow]NO(X hthinsp;[sup 2][Pi][sub 3/2,1/2],v[sup [double prime]]=0,J[sup [double prime]]). The PFI-PE bands for NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=6[endash]32) obtained here represent the first rotationally resolved spectroscopic data for these states. The simulation using the Buckingham[endash]Orr[endash]Sichel model provides accurate molecular constants for NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=0[endash]32), including ionization energies, vibrational constants ([omega][sub e][sup +]=2 hthinsp;382.997[plus minus]0.122 hthinsp;cm[sup [minus]1], [omega][sub e][sup +][chi][sub e][sup +]=17.437 hthinsp;84[plus minus]0.000 hthinsp;90 hthinsp;cm[sup [minus]1], [omega][sub e][sup +]y[sub e][sup +]=0.063 hthinsp;209 hthinsp;5[plus minus]3.2[times]10[sup [minus]6] hthinsp;cm[sup [minus]1], and [omega][sub e][sup +]z[sub e][sup +]=[minus]0.001 hthinsp;400 hthinsp;0[plus minus]7.2[times]10[sup [minus]8] hthinsp;cm[sup [minus]1]), and rotational constants (B[sub e][sup +]=1.996 hthinsp;608[plus minus]0.006 hthinsp;259 hthinsp;cm[sup [minus]1], [alpha][sub e][sup +]=0.020 hthinsp;103[plus minus]6.3[times]10[sup [minus]5] hthinsp;cm[sup [minus]1], and [gamma][sub e][sup +]=[minus](7.22[plus minus]2.26)[times]10[sup [minus]6] hthinsp;cm[sup [minus]1]). For v[sup +]=0[endash]15, the rotational branches are [Delta]J=J[sup +][minus]J[sup [double prime]]=[plus minus]1/2, [plus minus]3/2, [plus minus]5/2, [plus minus]7/2, and [plus minus]9/2, which correspond to the formation of photoelectron angular momentum states l=0,thinsp1, 2, and 3. The [Delta]J=[plus minus]1/2, [plus minus]3/2, [plus minus]5/2, [plus minus]7/2, [plus minus]9/2, and [plus minus]11/2 rotational branches are observed in the spectra for v[sup +]=16[endash]32, revealing the production of continuum photoelectron states l=0,thinsp1, 2, 3, and 4. The maximum [Delta]J value and intensities for high [Delta]J rotational branches are found to generally increase as v[sup +] is increased in the range of 0[endash]32. This observation is attributed to an increase in inelastic cross sections for collisions between the outgoing photoelectron and the nonspherical molecular ion core as the bond distance for NO[sup +] is increased. Thus, this o
ISSN:0021-9606
1089-7690
DOI:10.1063/1.479586