Loading…
Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits
An experimental technique is described for observing the effects of switching transients in digital MOS circuits that perturb analog circuits integrated on the same die by means of coupling through the substrate. Various approaches to reducing substrate crosstalk (the use of physical separation of a...
Saved in:
Published in: | IEEE journal of solid-state circuits 1993-04, Vol.28 (4), p.420-430 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experimental technique is described for observing the effects of switching transients in digital MOS circuits that perturb analog circuits integrated on the same die by means of coupling through the substrate. Various approaches to reducing substrate crosstalk (the use of physical separation of analog and digital circuits, guard rings, and a low-inductance substrate bias) are evaluated experimentally for a CMOS technology with a substrate comprising an epitaxial layer grown on a heavily doped bulk wafer. Observations indicate that reducing the inductance in the substrate bias is the most effective. Device simulations are used to show how crosstalk propagates via the heavily doped bulk and to predict the nature of substrate crosstalk in CMOS technologies integrated in uniform, lightly doped bulk substrates, showing that in such cases the substrate noise is highly dependent on layout geometry. A method of including substrate effects in SPICE simulations for circuits fabricated on epitaxial, heavily doped substrates is developed.< > |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/4.210024 |