Loading…
Vortices in high-temperature superconductors
The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j]...
Saved in:
Published in: | Reviews of modern physics 1994-10, Vol.66 (4), p.1125-1388 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023 |
container_end_page | 1388 |
container_issue | 4 |
container_start_page | 1125 |
container_title | Reviews of modern physics |
container_volume | 66 |
creator | Blatter, G. Feigel'man, M. V. Geshkenbein, V. B. Larkin, A. I. Vinokur, V. M. |
description | The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations. |
doi_str_mv | 10.1103/RevModPhys.66.1125 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6599645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_RevModPhys_66_1125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</originalsourceid><addsrcrecordid>eNpFkMFKxDAQhoMoWFdfwFPxbNdJ0kyboyy6CiuKqNeQThNbcdslyQr79nZZwdM___AxDB9jlxzmnIO8eXU_T2P70u3iHHFaCXXEMq6kLqBSeMwyAFkWWCM_ZWcxfsHUQVUZu_4YQ-rJxbwf8q7_7Irk1hsXbNoGl8ftNNI4tFtKY4jn7MTb7-gu_nLG3u_v3hYPxep5-bi4XRUka50KbUlg6XXjFQIXVEMrhZXkmwpkg56sQCe1UI1E0LWnxla2tq1swWsCIWfs6nB3jKk3kfrkqJveGBwlg0prLNUEiQNEYYwxOG82oV_bsDMczF6K-ZdiEM1eivwFJbJYKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortices in high-temperature superconductors</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M.</creator><creatorcontrib>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M. ; Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><description>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.66.1125</identifier><language>eng</language><publisher>United States</publisher><subject>665411 -- Basic Superconductivity Studies-- (1992-) ; ANISOTROPY ; CHALCOGENIDES ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CREEP ; CRITICALITY ; CURRENT DENSITY ; DIAGRAMS ; DIFFUSION ; ELASTICITY ; FLUCTUATIONS ; GINZBURG-LANDAU THEORY ; HAMILTONIANS ; HIGH-TC SUPERCONDUCTORS ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MECHANICAL PROPERTIES ; MECHANICS ; NUCLEAR MODELS ; OXIDES ; OXYGEN COMPOUNDS ; PHASE DIAGRAMS ; PHYSICAL PROPERTIES ; QUANTUM OPERATORS ; SCALING LAWS ; STATISTICAL MECHANICS ; SUPERCONDUCTORS ; SUPERFLUID MODEL ; TENSILE PROPERTIES ; THERMODYNAMIC PROPERTIES ; TYPE-II SUPERCONDUCTORS ; VARIATIONS 665410 -- Superconductivity-- (1992-) ; VORTICES</subject><ispartof>Reviews of modern physics, 1994-10, Vol.66 (4), p.1125-1388</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</citedby><cites>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6599645$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blatter, G.</creatorcontrib><creatorcontrib>Feigel'man, M. V.</creatorcontrib><creatorcontrib>Geshkenbein, V. B.</creatorcontrib><creatorcontrib>Larkin, A. I.</creatorcontrib><creatorcontrib>Vinokur, V. M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><title>Vortices in high-temperature superconductors</title><title>Reviews of modern physics</title><description>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</description><subject>665411 -- Basic Superconductivity Studies-- (1992-)</subject><subject>ANISOTROPY</subject><subject>CHALCOGENIDES</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CREEP</subject><subject>CRITICALITY</subject><subject>CURRENT DENSITY</subject><subject>DIAGRAMS</subject><subject>DIFFUSION</subject><subject>ELASTICITY</subject><subject>FLUCTUATIONS</subject><subject>GINZBURG-LANDAU THEORY</subject><subject>HAMILTONIANS</subject><subject>HIGH-TC SUPERCONDUCTORS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICAL PROPERTIES</subject><subject>MECHANICS</subject><subject>NUCLEAR MODELS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE DIAGRAMS</subject><subject>PHYSICAL PROPERTIES</subject><subject>QUANTUM OPERATORS</subject><subject>SCALING LAWS</subject><subject>STATISTICAL MECHANICS</subject><subject>SUPERCONDUCTORS</subject><subject>SUPERFLUID MODEL</subject><subject>TENSILE PROPERTIES</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TYPE-II SUPERCONDUCTORS</subject><subject>VARIATIONS 665410 -- Superconductivity-- (1992-)</subject><subject>VORTICES</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAQhoMoWFdfwFPxbNdJ0kyboyy6CiuKqNeQThNbcdslyQr79nZZwdM___AxDB9jlxzmnIO8eXU_T2P70u3iHHFaCXXEMq6kLqBSeMwyAFkWWCM_ZWcxfsHUQVUZu_4YQ-rJxbwf8q7_7Irk1hsXbNoGl8ftNNI4tFtKY4jn7MTb7-gu_nLG3u_v3hYPxep5-bi4XRUka50KbUlg6XXjFQIXVEMrhZXkmwpkg56sQCe1UI1E0LWnxla2tq1swWsCIWfs6nB3jKk3kfrkqJveGBwlg0prLNUEiQNEYYwxOG82oV_bsDMczF6K-ZdiEM1eivwFJbJYKQ</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Blatter, G.</creator><creator>Feigel'man, M. V.</creator><creator>Geshkenbein, V. B.</creator><creator>Larkin, A. I.</creator><creator>Vinokur, V. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19941001</creationdate><title>Vortices in high-temperature superconductors</title><author>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>665411 -- Basic Superconductivity Studies-- (1992-)</topic><topic>ANISOTROPY</topic><topic>CHALCOGENIDES</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CREEP</topic><topic>CRITICALITY</topic><topic>CURRENT DENSITY</topic><topic>DIAGRAMS</topic><topic>DIFFUSION</topic><topic>ELASTICITY</topic><topic>FLUCTUATIONS</topic><topic>GINZBURG-LANDAU THEORY</topic><topic>HAMILTONIANS</topic><topic>HIGH-TC SUPERCONDUCTORS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICAL PROPERTIES</topic><topic>MECHANICS</topic><topic>NUCLEAR MODELS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE DIAGRAMS</topic><topic>PHYSICAL PROPERTIES</topic><topic>QUANTUM OPERATORS</topic><topic>SCALING LAWS</topic><topic>STATISTICAL MECHANICS</topic><topic>SUPERCONDUCTORS</topic><topic>SUPERFLUID MODEL</topic><topic>TENSILE PROPERTIES</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TYPE-II SUPERCONDUCTORS</topic><topic>VARIATIONS 665410 -- Superconductivity-- (1992-)</topic><topic>VORTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blatter, G.</creatorcontrib><creatorcontrib>Feigel'man, M. V.</creatorcontrib><creatorcontrib>Geshkenbein, V. B.</creatorcontrib><creatorcontrib>Larkin, A. I.</creatorcontrib><creatorcontrib>Vinokur, V. M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blatter, G.</au><au>Feigel'man, M. V.</au><au>Geshkenbein, V. B.</au><au>Larkin, A. I.</au><au>Vinokur, V. M.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortices in high-temperature superconductors</atitle><jtitle>Reviews of modern physics</jtitle><date>1994-10-01</date><risdate>1994</risdate><volume>66</volume><issue>4</issue><spage>1125</spage><epage>1388</epage><pages>1125-1388</pages><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</abstract><cop>United States</cop><doi>10.1103/RevModPhys.66.1125</doi><tpages>264</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6861 |
ispartof | Reviews of modern physics, 1994-10, Vol.66 (4), p.1125-1388 |
issn | 0034-6861 1539-0756 |
language | eng |
recordid | cdi_osti_scitechconnect_6599645 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | 665411 -- Basic Superconductivity Studies-- (1992-) ANISOTROPY CHALCOGENIDES CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CREEP CRITICALITY CURRENT DENSITY DIAGRAMS DIFFUSION ELASTICITY FLUCTUATIONS GINZBURG-LANDAU THEORY HAMILTONIANS HIGH-TC SUPERCONDUCTORS MATHEMATICAL MODELS MATHEMATICAL OPERATORS MECHANICAL PROPERTIES MECHANICS NUCLEAR MODELS OXIDES OXYGEN COMPOUNDS PHASE DIAGRAMS PHYSICAL PROPERTIES QUANTUM OPERATORS SCALING LAWS STATISTICAL MECHANICS SUPERCONDUCTORS SUPERFLUID MODEL TENSILE PROPERTIES THERMODYNAMIC PROPERTIES TYPE-II SUPERCONDUCTORS VARIATIONS 665410 -- Superconductivity-- (1992-) VORTICES |
title | Vortices in high-temperature superconductors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortices%20in%20high-temperature%20superconductors&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Blatter,%20G.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL&rft.date=1994-10-01&rft.volume=66&rft.issue=4&rft.spage=1125&rft.epage=1388&rft.pages=1125-1388&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.66.1125&rft_dat=%3Ccrossref_osti_%3E10_1103_RevModPhys_66_1125%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |