Loading…

Vortices in high-temperature superconductors

The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j]...

Full description

Saved in:
Bibliographic Details
Published in:Reviews of modern physics 1994-10, Vol.66 (4), p.1125-1388
Main Authors: Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023
cites cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023
container_end_page 1388
container_issue 4
container_start_page 1125
container_title Reviews of modern physics
container_volume 66
creator Blatter, G.
Feigel'man, M. V.
Geshkenbein, V. B.
Larkin, A. I.
Vinokur, V. M.
description The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.
doi_str_mv 10.1103/RevModPhys.66.1125
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6599645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_RevModPhys_66_1125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</originalsourceid><addsrcrecordid>eNpFkMFKxDAQhoMoWFdfwFPxbNdJ0kyboyy6CiuKqNeQThNbcdslyQr79nZZwdM___AxDB9jlxzmnIO8eXU_T2P70u3iHHFaCXXEMq6kLqBSeMwyAFkWWCM_ZWcxfsHUQVUZu_4YQ-rJxbwf8q7_7Irk1hsXbNoGl8ftNNI4tFtKY4jn7MTb7-gu_nLG3u_v3hYPxep5-bi4XRUka50KbUlg6XXjFQIXVEMrhZXkmwpkg56sQCe1UI1E0LWnxla2tq1swWsCIWfs6nB3jKk3kfrkqJveGBwlg0prLNUEiQNEYYwxOG82oV_bsDMczF6K-ZdiEM1eivwFJbJYKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortices in high-temperature superconductors</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M.</creator><creatorcontrib>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M. ; Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><description>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.66.1125</identifier><language>eng</language><publisher>United States</publisher><subject>665411 -- Basic Superconductivity Studies-- (1992-) ; ANISOTROPY ; CHALCOGENIDES ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CREEP ; CRITICALITY ; CURRENT DENSITY ; DIAGRAMS ; DIFFUSION ; ELASTICITY ; FLUCTUATIONS ; GINZBURG-LANDAU THEORY ; HAMILTONIANS ; HIGH-TC SUPERCONDUCTORS ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MECHANICAL PROPERTIES ; MECHANICS ; NUCLEAR MODELS ; OXIDES ; OXYGEN COMPOUNDS ; PHASE DIAGRAMS ; PHYSICAL PROPERTIES ; QUANTUM OPERATORS ; SCALING LAWS ; STATISTICAL MECHANICS ; SUPERCONDUCTORS ; SUPERFLUID MODEL ; TENSILE PROPERTIES ; THERMODYNAMIC PROPERTIES ; TYPE-II SUPERCONDUCTORS ; VARIATIONS 665410 -- Superconductivity-- (1992-) ; VORTICES</subject><ispartof>Reviews of modern physics, 1994-10, Vol.66 (4), p.1125-1388</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</citedby><cites>FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6599645$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blatter, G.</creatorcontrib><creatorcontrib>Feigel'man, M. V.</creatorcontrib><creatorcontrib>Geshkenbein, V. B.</creatorcontrib><creatorcontrib>Larkin, A. I.</creatorcontrib><creatorcontrib>Vinokur, V. M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><title>Vortices in high-temperature superconductors</title><title>Reviews of modern physics</title><description>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</description><subject>665411 -- Basic Superconductivity Studies-- (1992-)</subject><subject>ANISOTROPY</subject><subject>CHALCOGENIDES</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CREEP</subject><subject>CRITICALITY</subject><subject>CURRENT DENSITY</subject><subject>DIAGRAMS</subject><subject>DIFFUSION</subject><subject>ELASTICITY</subject><subject>FLUCTUATIONS</subject><subject>GINZBURG-LANDAU THEORY</subject><subject>HAMILTONIANS</subject><subject>HIGH-TC SUPERCONDUCTORS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICAL PROPERTIES</subject><subject>MECHANICS</subject><subject>NUCLEAR MODELS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE DIAGRAMS</subject><subject>PHYSICAL PROPERTIES</subject><subject>QUANTUM OPERATORS</subject><subject>SCALING LAWS</subject><subject>STATISTICAL MECHANICS</subject><subject>SUPERCONDUCTORS</subject><subject>SUPERFLUID MODEL</subject><subject>TENSILE PROPERTIES</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TYPE-II SUPERCONDUCTORS</subject><subject>VARIATIONS 665410 -- Superconductivity-- (1992-)</subject><subject>VORTICES</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAQhoMoWFdfwFPxbNdJ0kyboyy6CiuKqNeQThNbcdslyQr79nZZwdM___AxDB9jlxzmnIO8eXU_T2P70u3iHHFaCXXEMq6kLqBSeMwyAFkWWCM_ZWcxfsHUQVUZu_4YQ-rJxbwf8q7_7Irk1hsXbNoGl8ftNNI4tFtKY4jn7MTb7-gu_nLG3u_v3hYPxep5-bi4XRUka50KbUlg6XXjFQIXVEMrhZXkmwpkg56sQCe1UI1E0LWnxla2tq1swWsCIWfs6nB3jKk3kfrkqJveGBwlg0prLNUEiQNEYYwxOG82oV_bsDMczF6K-ZdiEM1eivwFJbJYKQ</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>Blatter, G.</creator><creator>Feigel'man, M. V.</creator><creator>Geshkenbein, V. B.</creator><creator>Larkin, A. I.</creator><creator>Vinokur, V. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19941001</creationdate><title>Vortices in high-temperature superconductors</title><author>Blatter, G. ; Feigel'man, M. V. ; Geshkenbein, V. B. ; Larkin, A. I. ; Vinokur, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>665411 -- Basic Superconductivity Studies-- (1992-)</topic><topic>ANISOTROPY</topic><topic>CHALCOGENIDES</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CREEP</topic><topic>CRITICALITY</topic><topic>CURRENT DENSITY</topic><topic>DIAGRAMS</topic><topic>DIFFUSION</topic><topic>ELASTICITY</topic><topic>FLUCTUATIONS</topic><topic>GINZBURG-LANDAU THEORY</topic><topic>HAMILTONIANS</topic><topic>HIGH-TC SUPERCONDUCTORS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICAL PROPERTIES</topic><topic>MECHANICS</topic><topic>NUCLEAR MODELS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE DIAGRAMS</topic><topic>PHYSICAL PROPERTIES</topic><topic>QUANTUM OPERATORS</topic><topic>SCALING LAWS</topic><topic>STATISTICAL MECHANICS</topic><topic>SUPERCONDUCTORS</topic><topic>SUPERFLUID MODEL</topic><topic>TENSILE PROPERTIES</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TYPE-II SUPERCONDUCTORS</topic><topic>VARIATIONS 665410 -- Superconductivity-- (1992-)</topic><topic>VORTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blatter, G.</creatorcontrib><creatorcontrib>Feigel'man, M. V.</creatorcontrib><creatorcontrib>Geshkenbein, V. B.</creatorcontrib><creatorcontrib>Larkin, A. I.</creatorcontrib><creatorcontrib>Vinokur, V. M.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blatter, G.</au><au>Feigel'man, M. V.</au><au>Geshkenbein, V. B.</au><au>Larkin, A. I.</au><au>Vinokur, V. M.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortices in high-temperature superconductors</atitle><jtitle>Reviews of modern physics</jtitle><date>1994-10-01</date><risdate>1994</risdate><volume>66</volume><issue>4</issue><spage>1125</spage><epage>1388</epage><pages>1125-1388</pages><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>The terms glass'' and liquid'' are defined in a dynamic sense, with a sublinear response [rho]=[partial derivative][ital E]/[partial derivative][ital j][vert bar][sub [ital j][r arrow]0] characterizing the truly superconducting vortex glass and a finite resistivity [rho]([ital j][r arrow]0)[gt]0 being the signature of the liquid phase. The smallness of [ital j][sub [ital c]]/[ital j][sub o] allows one to discuss the influence of quenched disorder in terms of the weak collective pinning theory. Supplementing the traditional theory of weak collective pinning to take into account thermal and quantum fluctuations, as well as the new scaling concepts for elastic media subject to a random potential, this modern version of the weak collective pinning theory consistently accounts for a large number of novel phenomena, such as the broad resistive transition, thermally assisted flux flow, giant and quantum creep, and the glassiness of the solid state. The strong layering of the oxides introduces additional new features into the thermodynamic phase diagram, such as a layer decoupling transition, and modifies the mechanism of pinning and creep in various ways. The presence of strong (correlated) disorder in the form of twin boundaries or columnar defects not only is technologically relevant but also provides the framework for the physical realization of novel thermodynamic phases such as the Bose glass. On a macroscopic scale the vortex system exhibits self-organized criticality, with both the spatial and the temporal scale accessible to experimental investigations.</abstract><cop>United States</cop><doi>10.1103/RevModPhys.66.1125</doi><tpages>264</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6861
ispartof Reviews of modern physics, 1994-10, Vol.66 (4), p.1125-1388
issn 0034-6861
1539-0756
language eng
recordid cdi_osti_scitechconnect_6599645
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects 665411 -- Basic Superconductivity Studies-- (1992-)
ANISOTROPY
CHALCOGENIDES
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CREEP
CRITICALITY
CURRENT DENSITY
DIAGRAMS
DIFFUSION
ELASTICITY
FLUCTUATIONS
GINZBURG-LANDAU THEORY
HAMILTONIANS
HIGH-TC SUPERCONDUCTORS
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MECHANICAL PROPERTIES
MECHANICS
NUCLEAR MODELS
OXIDES
OXYGEN COMPOUNDS
PHASE DIAGRAMS
PHYSICAL PROPERTIES
QUANTUM OPERATORS
SCALING LAWS
STATISTICAL MECHANICS
SUPERCONDUCTORS
SUPERFLUID MODEL
TENSILE PROPERTIES
THERMODYNAMIC PROPERTIES
TYPE-II SUPERCONDUCTORS
VARIATIONS 665410 -- Superconductivity-- (1992-)
VORTICES
title Vortices in high-temperature superconductors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortices%20in%20high-temperature%20superconductors&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Blatter,%20G.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL&rft.date=1994-10-01&rft.volume=66&rft.issue=4&rft.spage=1125&rft.epage=1388&rft.pages=1125-1388&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.66.1125&rft_dat=%3Ccrossref_osti_%3E10_1103_RevModPhys_66_1125%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-9ac264f9bf56012c80d32a3cfb703b6fca26e3925b36098fcba7a8ad3d0f9c023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true