Loading…
Anyonic partition functions and windings of planar Brownian motion
The computation of the [ital N]-cycle Brownian paths contribution [ital F][sub [ital N]]([alpha]) to the [ital N]-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that [ital F][sub [ital N]][sup 0]([alpha])=[product][sub [ital k]=1][s...
Saved in:
Published in: | Physical review. D, Particles and fields Particles and fields, 1995-01, Vol.51 (2), p.942-945 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573 |
container_end_page | 945 |
container_issue | 2 |
container_start_page | 942 |
container_title | Physical review. D, Particles and fields |
container_volume | 51 |
creator | Desbois, J Heinemann, C Ouvry, S |
description | The computation of the [ital N]-cycle Brownian paths contribution [ital F][sub [ital N]]([alpha]) to the [ital N]-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that [ital F][sub [ital N]][sup 0]([alpha])=[product][sub [ital k]=1][sup [ital N][minus]1][1[minus]([ital N]/[ital k])[alpha]]. In the paramount three-anyon case, one can show that [ital F][sub 3]([alpha]) is built by linear states belonging to the bosonic, fermionic, and mixed representations of [ital S][sub 3]. |
doi_str_mv | 10.1103/PhysRevD.51.942 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6645073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859274372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573</originalsourceid><addsrcrecordid>eNpNkLtPwzAQhy0EoqUwsyGLiSWtH7HjjKU8pUogBLPl-EGNGjvECVX_e1K1SNxyN3z3090HwCVGU4wRnb2utunN_txNGZ6WOTkCY4xEmeUlFsdgjBjjGREEj8BZSl9oKMLpKRhhhLBgDI3B7TxsY_AaNqrtfOdjgK4PejckqIKBGx-MD58JRgebtQqqhbdt3ASvAqzjjjsHJ06tk7049An4eLh_Xzxly5fH58V8mWlKSJdVxpU5yjV2zDhcUaW544IYxC0itrCl4oWrGCu0NkwYpBk3SjhhseIlYQWdgOt9bkydl0n7zuqVjiFY3UnOc4YKOkA3e6hp43dvUydrn7RdD5fb2Cc5vF2SIqcFGdDZHtVtTKm1Tjatr1W7lRjJnV35Z1cyLAe7w8bVIbyvamv-8Xud9BcwQXdT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859274372</pqid></control><display><type>article</type><title>Anyonic partition functions and windings of planar Brownian motion</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Desbois, J ; Heinemann, C ; Ouvry, S</creator><creatorcontrib>Desbois, J ; Heinemann, C ; Ouvry, S</creatorcontrib><description>The computation of the [ital N]-cycle Brownian paths contribution [ital F][sub [ital N]]([alpha]) to the [ital N]-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that [ital F][sub [ital N]][sup 0]([alpha])=[product][sub [ital k]=1][sup [ital N][minus]1][1[minus]([ital N]/[ital k])[alpha]]. In the paramount three-anyon case, one can show that [ital F][sub 3]([alpha]) is built by linear states belonging to the bosonic, fermionic, and mixed representations of [ital S][sub 3].</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.51.942</identifier><identifier>PMID: 10018550</identifier><language>eng</language><publisher>United States</publisher><subject>661300 -- Other Aspects of Physical Science-- (1992-) ; ANYONS ; BOSONS ; BROWNIAN MOVEMENT ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; FERMIONS ; FUNCTIONS ; MATHEMATICS ; NUMERICAL ANALYSIS ; PARTITION FUNCTIONS ; QUASI PARTICLES 661100 -- Classical & Quantum Mechanics-- (1992-)</subject><ispartof>Physical review. D, Particles and fields, 1995-01, Vol.51 (2), p.942-945</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573</citedby><cites>FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10018550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6645073$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Desbois, J</creatorcontrib><creatorcontrib>Heinemann, C</creatorcontrib><creatorcontrib>Ouvry, S</creatorcontrib><title>Anyonic partition functions and windings of planar Brownian motion</title><title>Physical review. D, Particles and fields</title><addtitle>Phys Rev D Part Fields</addtitle><description>The computation of the [ital N]-cycle Brownian paths contribution [ital F][sub [ital N]]([alpha]) to the [ital N]-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that [ital F][sub [ital N]][sup 0]([alpha])=[product][sub [ital k]=1][sup [ital N][minus]1][1[minus]([ital N]/[ital k])[alpha]]. In the paramount three-anyon case, one can show that [ital F][sub 3]([alpha]) is built by linear states belonging to the bosonic, fermionic, and mixed representations of [ital S][sub 3].</description><subject>661300 -- Other Aspects of Physical Science-- (1992-)</subject><subject>ANYONS</subject><subject>BOSONS</subject><subject>BROWNIAN MOVEMENT</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>FERMIONS</subject><subject>FUNCTIONS</subject><subject>MATHEMATICS</subject><subject>NUMERICAL ANALYSIS</subject><subject>PARTITION FUNCTIONS</subject><subject>QUASI PARTICLES 661100 -- Classical & Quantum Mechanics-- (1992-)</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpNkLtPwzAQhy0EoqUwsyGLiSWtH7HjjKU8pUogBLPl-EGNGjvECVX_e1K1SNxyN3z3090HwCVGU4wRnb2utunN_txNGZ6WOTkCY4xEmeUlFsdgjBjjGREEj8BZSl9oKMLpKRhhhLBgDI3B7TxsY_AaNqrtfOdjgK4PejckqIKBGx-MD58JRgebtQqqhbdt3ASvAqzjjjsHJ06tk7049An4eLh_Xzxly5fH58V8mWlKSJdVxpU5yjV2zDhcUaW544IYxC0itrCl4oWrGCu0NkwYpBk3SjhhseIlYQWdgOt9bkydl0n7zuqVjiFY3UnOc4YKOkA3e6hp43dvUydrn7RdD5fb2Cc5vF2SIqcFGdDZHtVtTKm1Tjatr1W7lRjJnV35Z1cyLAe7w8bVIbyvamv-8Xud9BcwQXdT</recordid><startdate>19950115</startdate><enddate>19950115</enddate><creator>Desbois, J</creator><creator>Heinemann, C</creator><creator>Ouvry, S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19950115</creationdate><title>Anyonic partition functions and windings of planar Brownian motion</title><author>Desbois, J ; Heinemann, C ; Ouvry, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>661300 -- Other Aspects of Physical Science-- (1992-)</topic><topic>ANYONS</topic><topic>BOSONS</topic><topic>BROWNIAN MOVEMENT</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>FERMIONS</topic><topic>FUNCTIONS</topic><topic>MATHEMATICS</topic><topic>NUMERICAL ANALYSIS</topic><topic>PARTITION FUNCTIONS</topic><topic>QUASI PARTICLES 661100 -- Classical & Quantum Mechanics-- (1992-)</topic><toplevel>online_resources</toplevel><creatorcontrib>Desbois, J</creatorcontrib><creatorcontrib>Heinemann, C</creatorcontrib><creatorcontrib>Ouvry, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desbois, J</au><au>Heinemann, C</au><au>Ouvry, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anyonic partition functions and windings of planar Brownian motion</atitle><jtitle>Physical review. D, Particles and fields</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1995-01-15</date><risdate>1995</risdate><volume>51</volume><issue>2</issue><spage>942</spage><epage>945</epage><pages>942-945</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><abstract>The computation of the [ital N]-cycle Brownian paths contribution [ital F][sub [ital N]]([alpha]) to the [ital N]-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that [ital F][sub [ital N]][sup 0]([alpha])=[product][sub [ital k]=1][sup [ital N][minus]1][1[minus]([ital N]/[ital k])[alpha]]. In the paramount three-anyon case, one can show that [ital F][sub 3]([alpha]) is built by linear states belonging to the bosonic, fermionic, and mixed representations of [ital S][sub 3].</abstract><cop>United States</cop><pmid>10018550</pmid><doi>10.1103/PhysRevD.51.942</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2821 |
ispartof | Physical review. D, Particles and fields, 1995-01, Vol.51 (2), p.942-945 |
issn | 0556-2821 1089-4918 |
language | eng |
recordid | cdi_osti_scitechconnect_6645073 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | 661300 -- Other Aspects of Physical Science-- (1992-) ANYONS BOSONS BROWNIAN MOVEMENT CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS FERMIONS FUNCTIONS MATHEMATICS NUMERICAL ANALYSIS PARTITION FUNCTIONS QUASI PARTICLES 661100 -- Classical & Quantum Mechanics-- (1992-) |
title | Anyonic partition functions and windings of planar Brownian motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anyonic%20partition%20functions%20and%20windings%20of%20planar%20Brownian%20motion&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=Desbois,%20J&rft.date=1995-01-15&rft.volume=51&rft.issue=2&rft.spage=942&rft.epage=945&rft.pages=942-945&rft.issn=0556-2821&rft.eissn=1089-4918&rft_id=info:doi/10.1103/PhysRevD.51.942&rft_dat=%3Cproquest_osti_%3E1859274372%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-bdf9404c1f5df1b3ac6f682d06e02e7e9a67fb557ccd58d0c56da8f8e1a692573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859274372&rft_id=info:pmid/10018550&rfr_iscdi=true |