Loading…
A Fast Algorithm for Grid Generation
The need for fast grid generation has become an important part of solving large complex computational fluid dynamic problems. A new algorithm is developed for this purpose. The two-dimensional system of equations for coordinate generation includes a procedure to force the line spacing in the interio...
Saved in:
Published in: | Journal of computational physics 1993-01, Vol.104 (1), p.118-128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The need for fast grid generation has become an important part of solving large complex computational fluid dynamic problems. A new algorithm is developed for this purpose. The two-dimensional system of equations for coordinate generation includes a procedure to force the line spacing in the interior field to reflect the adjacent point distribution. The coordinate generation equations, in Newton's iteration form, are solved with a modified strongly implicit (MSI) procedure. The algorithm is applied to typical H-, O-, and C-type grids and a practical problem configured as a forward facing cavity. The grid generation equations were initialized with their Laplacian counterpart. All computations were performed on a MicroVax 3400 computer. Based on the numerical studies, the proposed solution scheme is faster than the more common point SOR and ADI methods for large grid generation problems of practical interest. The degree of computational saving however is highly problem dependent. Extensions of the solution scheme to problems involving three-dimensions, including surfaces in three-dimensional space, are described. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1006/jcph.1993.1014 |