Loading…

Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube rec...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 1994-08, Vol.53 (2), p.191-197
Main Authors: Headley, O.StC, Kothdiwala, A.F., McDoom, I.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363
cites cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363
container_end_page 197
container_issue 2
container_start_page 191
container_title Solar energy
container_volume 53
creator Headley, O.StC
Kothdiwala, A.F.
McDoom, I.A.
description A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m −2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M −2).
doi_str_mv 10.1016/0038-092X(94)90481-2
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6775915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X94904812</els_id><sourcerecordid>5948283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoIdtt_kEOJvTQHtxo9GFLl0JZ2iYQyCWB3MRYlncVvJIjeVvy7yN3Q3orCAaG5x29PIScA_0KFJpLSrmqqWYPn7X4oqlQULMTsgLRQg1Mtu_I6g05JR9yfqQUWlDtimw3O0w24ljv3bzDEMcK-xzTNPsYquSG5Lcu4RxTNcU_Lrm-6p4rrGzcT_EQ-mrChF0cvS2rYF2YC-zDtspxxFR24-hsSX8k7wccszt7nWty__PH3eaqvrn9db35flNbScVc68GBFGzoG6GkFE0DnRgk4iC4BaGl6ihS2SnGLZPaOqZBKjUo5SzlHW_4mlwc78Y8e5Otn53dlWahtDBN28oS-AdNKT4dXJ7NYzykUHoZxqFtOUhWIHGEbIo5FxNmSn6P6dkANYt2szg1i1Ojhfmr3SyxT6-3MVsch4TB-vyWFQw0L29Nvh0xV2T89i4tXV0R2Pu0VO2j__8_Lwxblw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231773152</pqid></control><display><type>article</type><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><source>ScienceDirect Journals</source><creator>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</creator><creatorcontrib>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</creatorcontrib><description>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m −2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M −2).</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(94)90481-2</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>ACTIVATED CARBON ; ADSORBENTS ; ADSORPTION ; ALCOHOLS ; Applied sciences ; CARBON ; COMPOUND PARABOLIC CONCENTRATORS ; COOLING ; ELEMENTS ; Energy ; Exact sciences and technology ; HYDROXY COMPOUNDS ; METHANOL ; Natural energy ; NONMETALS ; ORGANIC COMPOUNDS ; PERFORMANCE TESTING ; REFRIGERATION ; REFRIGERATORS ; Solar collectors ; SOLAR CONCENTRATORS ; SOLAR COOLING SYSTEMS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; SOLAR REFRIGERATION ; SOLAR REFRIGERATORS ; Solar thermal conversion ; SORPTION ; TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</subject><ispartof>Solar energy, 1994-08, Vol.53 (2), p.191-197</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Aug 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</citedby><cites>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0038092X94904812$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3450,27905,27906,45949</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4219319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6775915$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Headley, O.StC</creatorcontrib><creatorcontrib>Kothdiwala, A.F.</creatorcontrib><creatorcontrib>McDoom, I.A.</creatorcontrib><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><title>Solar energy</title><description>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m −2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M −2).</description><subject>ACTIVATED CARBON</subject><subject>ADSORBENTS</subject><subject>ADSORPTION</subject><subject>ALCOHOLS</subject><subject>Applied sciences</subject><subject>CARBON</subject><subject>COMPOUND PARABOLIC CONCENTRATORS</subject><subject>COOLING</subject><subject>ELEMENTS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>HYDROXY COMPOUNDS</subject><subject>METHANOL</subject><subject>Natural energy</subject><subject>NONMETALS</subject><subject>ORGANIC COMPOUNDS</subject><subject>PERFORMANCE TESTING</subject><subject>REFRIGERATION</subject><subject>REFRIGERATORS</subject><subject>Solar collectors</subject><subject>SOLAR CONCENTRATORS</subject><subject>SOLAR COOLING SYSTEMS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>SOLAR REFRIGERATION</subject><subject>SOLAR REFRIGERATORS</subject><subject>Solar thermal conversion</subject><subject>SORPTION</subject><subject>TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoIdtt_kEOJvTQHtxo9GFLl0JZ2iYQyCWB3MRYlncVvJIjeVvy7yN3Q3orCAaG5x29PIScA_0KFJpLSrmqqWYPn7X4oqlQULMTsgLRQg1Mtu_I6g05JR9yfqQUWlDtimw3O0w24ljv3bzDEMcK-xzTNPsYquSG5Lcu4RxTNcU_Lrm-6p4rrGzcT_EQ-mrChF0cvS2rYF2YC-zDtspxxFR24-hsSX8k7wccszt7nWty__PH3eaqvrn9db35flNbScVc68GBFGzoG6GkFE0DnRgk4iC4BaGl6ihS2SnGLZPaOqZBKjUo5SzlHW_4mlwc78Y8e5Otn53dlWahtDBN28oS-AdNKT4dXJ7NYzykUHoZxqFtOUhWIHGEbIo5FxNmSn6P6dkANYt2szg1i1Ojhfmr3SyxT6-3MVsch4TB-vyWFQw0L29Nvh0xV2T89i4tXV0R2Pu0VO2j__8_Lwxblw0</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Headley, O.StC</creator><creator>Kothdiwala, A.F.</creator><creator>McDoom, I.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>19940801</creationdate><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><author>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>ACTIVATED CARBON</topic><topic>ADSORBENTS</topic><topic>ADSORPTION</topic><topic>ALCOHOLS</topic><topic>Applied sciences</topic><topic>CARBON</topic><topic>COMPOUND PARABOLIC CONCENTRATORS</topic><topic>COOLING</topic><topic>ELEMENTS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>HYDROXY COMPOUNDS</topic><topic>METHANOL</topic><topic>Natural energy</topic><topic>NONMETALS</topic><topic>ORGANIC COMPOUNDS</topic><topic>PERFORMANCE TESTING</topic><topic>REFRIGERATION</topic><topic>REFRIGERATORS</topic><topic>Solar collectors</topic><topic>SOLAR CONCENTRATORS</topic><topic>SOLAR COOLING SYSTEMS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>SOLAR REFRIGERATION</topic><topic>SOLAR REFRIGERATORS</topic><topic>Solar thermal conversion</topic><topic>SORPTION</topic><topic>TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Headley, O.StC</creatorcontrib><creatorcontrib>Kothdiwala, A.F.</creatorcontrib><creatorcontrib>McDoom, I.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Headley, O.StC</au><au>Kothdiwala, A.F.</au><au>McDoom, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</atitle><jtitle>Solar energy</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>53</volume><issue>2</issue><spage>191</spage><epage>197</epage><pages>191-197</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m −2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M −2).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(94)90481-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 1994-08, Vol.53 (2), p.191-197
issn 0038-092X
1471-1257
language eng
recordid cdi_osti_scitechconnect_6775915
source ScienceDirect Journals
subjects ACTIVATED CARBON
ADSORBENTS
ADSORPTION
ALCOHOLS
Applied sciences
CARBON
COMPOUND PARABOLIC CONCENTRATORS
COOLING
ELEMENTS
Energy
Exact sciences and technology
HYDROXY COMPOUNDS
METHANOL
Natural energy
NONMETALS
ORGANIC COMPOUNDS
PERFORMANCE TESTING
REFRIGERATION
REFRIGERATORS
Solar collectors
SOLAR CONCENTRATORS
SOLAR COOLING SYSTEMS
SOLAR ENERGY
SOLAR EQUIPMENT
SOLAR REFRIGERATION
SOLAR REFRIGERATORS
Solar thermal conversion
SORPTION
TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)
title Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charcoal-methanol%20adsorption%20refrigerator%20powered%20by%20a%20compound%20parabolic%20concentrating%20solar%20collector&rft.jtitle=Solar%20energy&rft.au=Headley,%20O.StC&rft.date=1994-08-01&rft.volume=53&rft.issue=2&rft.spage=191&rft.epage=197&rft.pages=191-197&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(94)90481-2&rft_dat=%3Cproquest_osti_%3E5948283%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231773152&rft_id=info:pmid/&rfr_iscdi=true