Loading…
Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector
A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m 2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube rec...
Saved in:
Published in: | Solar energy 1994-08, Vol.53 (2), p.191-197 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363 |
container_end_page | 197 |
container_issue | 2 |
container_start_page | 191 |
container_title | Solar energy |
container_volume | 53 |
creator | Headley, O.StC Kothdiwala, A.F. McDoom, I.A. |
description | A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m
2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m
−2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M
−2). |
doi_str_mv | 10.1016/0038-092X(94)90481-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6775915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X94904812</els_id><sourcerecordid>5948283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoIdtt_kEOJvTQHtxo9GFLl0JZ2iYQyCWB3MRYlncVvJIjeVvy7yN3Q3orCAaG5x29PIScA_0KFJpLSrmqqWYPn7X4oqlQULMTsgLRQg1Mtu_I6g05JR9yfqQUWlDtimw3O0w24ljv3bzDEMcK-xzTNPsYquSG5Lcu4RxTNcU_Lrm-6p4rrGzcT_EQ-mrChF0cvS2rYF2YC-zDtspxxFR24-hsSX8k7wccszt7nWty__PH3eaqvrn9db35flNbScVc68GBFGzoG6GkFE0DnRgk4iC4BaGl6ihS2SnGLZPaOqZBKjUo5SzlHW_4mlwc78Y8e5Otn53dlWahtDBN28oS-AdNKT4dXJ7NYzykUHoZxqFtOUhWIHGEbIo5FxNmSn6P6dkANYt2szg1i1Ojhfmr3SyxT6-3MVsch4TB-vyWFQw0L29Nvh0xV2T89i4tXV0R2Pu0VO2j__8_Lwxblw0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231773152</pqid></control><display><type>article</type><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><source>ScienceDirect Journals</source><creator>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</creator><creatorcontrib>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</creatorcontrib><description>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m
2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m
−2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M
−2).</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(94)90481-2</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>ACTIVATED CARBON ; ADSORBENTS ; ADSORPTION ; ALCOHOLS ; Applied sciences ; CARBON ; COMPOUND PARABOLIC CONCENTRATORS ; COOLING ; ELEMENTS ; Energy ; Exact sciences and technology ; HYDROXY COMPOUNDS ; METHANOL ; Natural energy ; NONMETALS ; ORGANIC COMPOUNDS ; PERFORMANCE TESTING ; REFRIGERATION ; REFRIGERATORS ; Solar collectors ; SOLAR CONCENTRATORS ; SOLAR COOLING SYSTEMS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; SOLAR REFRIGERATION ; SOLAR REFRIGERATORS ; Solar thermal conversion ; SORPTION ; TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</subject><ispartof>Solar energy, 1994-08, Vol.53 (2), p.191-197</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Aug 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</citedby><cites>FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0038092X94904812$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3450,27905,27906,45949</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4219319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6775915$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Headley, O.StC</creatorcontrib><creatorcontrib>Kothdiwala, A.F.</creatorcontrib><creatorcontrib>McDoom, I.A.</creatorcontrib><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><title>Solar energy</title><description>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m
2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m
−2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M
−2).</description><subject>ACTIVATED CARBON</subject><subject>ADSORBENTS</subject><subject>ADSORPTION</subject><subject>ALCOHOLS</subject><subject>Applied sciences</subject><subject>CARBON</subject><subject>COMPOUND PARABOLIC CONCENTRATORS</subject><subject>COOLING</subject><subject>ELEMENTS</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>HYDROXY COMPOUNDS</subject><subject>METHANOL</subject><subject>Natural energy</subject><subject>NONMETALS</subject><subject>ORGANIC COMPOUNDS</subject><subject>PERFORMANCE TESTING</subject><subject>REFRIGERATION</subject><subject>REFRIGERATORS</subject><subject>Solar collectors</subject><subject>SOLAR CONCENTRATORS</subject><subject>SOLAR COOLING SYSTEMS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>SOLAR REFRIGERATION</subject><subject>SOLAR REFRIGERATORS</subject><subject>Solar thermal conversion</subject><subject>SORPTION</subject><subject>TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoIdtt_kEOJvTQHtxo9GFLl0JZ2iYQyCWB3MRYlncVvJIjeVvy7yN3Q3orCAaG5x29PIScA_0KFJpLSrmqqWYPn7X4oqlQULMTsgLRQg1Mtu_I6g05JR9yfqQUWlDtimw3O0w24ljv3bzDEMcK-xzTNPsYquSG5Lcu4RxTNcU_Lrm-6p4rrGzcT_EQ-mrChF0cvS2rYF2YC-zDtspxxFR24-hsSX8k7wccszt7nWty__PH3eaqvrn9db35flNbScVc68GBFGzoG6GkFE0DnRgk4iC4BaGl6ihS2SnGLZPaOqZBKjUo5SzlHW_4mlwc78Y8e5Otn53dlWahtDBN28oS-AdNKT4dXJ7NYzykUHoZxqFtOUhWIHGEbIo5FxNmSn6P6dkANYt2szg1i1Ojhfmr3SyxT6-3MVsch4TB-vyWFQw0L29Nvh0xV2T89i4tXV0R2Pu0VO2j__8_Lwxblw0</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Headley, O.StC</creator><creator>Kothdiwala, A.F.</creator><creator>McDoom, I.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>19940801</creationdate><title>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</title><author>Headley, O.StC ; Kothdiwala, A.F. ; McDoom, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>ACTIVATED CARBON</topic><topic>ADSORBENTS</topic><topic>ADSORPTION</topic><topic>ALCOHOLS</topic><topic>Applied sciences</topic><topic>CARBON</topic><topic>COMPOUND PARABOLIC CONCENTRATORS</topic><topic>COOLING</topic><topic>ELEMENTS</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>HYDROXY COMPOUNDS</topic><topic>METHANOL</topic><topic>Natural energy</topic><topic>NONMETALS</topic><topic>ORGANIC COMPOUNDS</topic><topic>PERFORMANCE TESTING</topic><topic>REFRIGERATION</topic><topic>REFRIGERATORS</topic><topic>Solar collectors</topic><topic>SOLAR CONCENTRATORS</topic><topic>SOLAR COOLING SYSTEMS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>SOLAR REFRIGERATION</topic><topic>SOLAR REFRIGERATORS</topic><topic>Solar thermal conversion</topic><topic>SORPTION</topic><topic>TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Headley, O.StC</creatorcontrib><creatorcontrib>Kothdiwala, A.F.</creatorcontrib><creatorcontrib>McDoom, I.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Headley, O.StC</au><au>Kothdiwala, A.F.</au><au>McDoom, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector</atitle><jtitle>Solar energy</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>53</volume><issue>2</issue><spage>191</spage><epage>197</epage><pages>191-197</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m
2 was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilised when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of −6°C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154°C on a day when the insolation was 26.8 MJ/m
−2. Temperatures in excess of 150°C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation ∼ 10 MJ/M
−2).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(94)90481-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 1994-08, Vol.53 (2), p.191-197 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_osti_scitechconnect_6775915 |
source | ScienceDirect Journals |
subjects | ACTIVATED CARBON ADSORBENTS ADSORPTION ALCOHOLS Applied sciences CARBON COMPOUND PARABOLIC CONCENTRATORS COOLING ELEMENTS Energy Exact sciences and technology HYDROXY COMPOUNDS METHANOL Natural energy NONMETALS ORGANIC COMPOUNDS PERFORMANCE TESTING REFRIGERATION REFRIGERATORS Solar collectors SOLAR CONCENTRATORS SOLAR COOLING SYSTEMS SOLAR ENERGY SOLAR EQUIPMENT SOLAR REFRIGERATION SOLAR REFRIGERATORS Solar thermal conversion SORPTION TESTING 140909 -- Solar Thermal Utilization-- Miscellaneous Solar Applications-- (1980-) |
title | Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charcoal-methanol%20adsorption%20refrigerator%20powered%20by%20a%20compound%20parabolic%20concentrating%20solar%20collector&rft.jtitle=Solar%20energy&rft.au=Headley,%20O.StC&rft.date=1994-08-01&rft.volume=53&rft.issue=2&rft.spage=191&rft.epage=197&rft.pages=191-197&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(94)90481-2&rft_dat=%3Cproquest_osti_%3E5948283%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-9fe1542fd648554661b4f5aaf43c14958b0a05b823c259ce291588f88ec03b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231773152&rft_id=info:pmid/&rfr_iscdi=true |