Loading…

Composite membranes for fuel-cell applications

One of the major obstacles to overcome for the realization of economical hydrogen‐oxygen, polymer‐electrolyte fuel cells is the high capital cost of the inert perfluorosulfonic acid (PSA) membranes, which provide a pathway for ionic transport between the cell electrodes. It has recently been shown t...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 1992-01, Vol.38 (1), p.93-100
Main Authors: Verbrugge, Mark W., Hill, Robert F., Schneider, Eric W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253
cites cdi_FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253
container_end_page 100
container_issue 1
container_start_page 93
container_title AIChE journal
container_volume 38
creator Verbrugge, Mark W.
Hill, Robert F.
Schneider, Eric W.
description One of the major obstacles to overcome for the realization of economical hydrogen‐oxygen, polymer‐electrolyte fuel cells is the high capital cost of the inert perfluorosulfonic acid (PSA) membranes, which provide a pathway for ionic transport between the cell electrodes. It has recently been shown that composite polymer membranes can be synthesized by depositing PSA polymers onto porous poly(tetrafluoroethyene) (PTFE) substrates. The resulting membranes are mechanically durable and quite thin relative to traditional PSA membranes; we expect the composite membranes to be of low resistance and cost. In this experimental study, we examine the composite membrane properties as a function of the membrane composition. Our results allow us to form a conceptual model to explain both the equilibrium and transport characteristics of these materials. For high PSA contents, the membrane behavior is similar to that of the PSA polymer; the water permeability, however, is reduced significantly. For intermediate PSA contents, the membranes have a high porosity and match the thickness of the PTFE substrate (≈50 μm); membranes of this composition range are potentially useful candidates for fuel cells because of their high resistance to water transport and reduced ionic resistance. Composite membranes of very low PSA content demonstrate characteristics similar to the hydrophobic PTFE substrate and are not of interest for fuel cells.
doi_str_mv 10.1002/aic.690380110
format article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6931206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_03X5031K_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK4evRfx2nWSaZr2uBRdF0VBFL2FNE0w2i-aiu5_b5YuiydPwwy_N_PmEXJOYUEB2JVyepHmgBlQCgdkRnkiYp4DPyQzAKBxGNBjcuL9R-iYyNiMLIqu6TvvRhM1pikH1Rof2W6I7JepY23qOlJ9XzutRte1_pQcWVV7c7arc_Jyc_1c3Mb3j6t1sbyPdUIRYlNaW1aZYUmJXFUVCG0EVilYgSgEq1hCDYo84dpoJQynVUYri5hYyBPGcU4upr2dH530OvjT77prW6NHmeZIGaQBiidID533g7GyH1yjho2kILeJyJCI3CcS-MuJ75XXqrbhWe38XsR5wHCLiQn7drXZ_L9TLtfF3wM7Q86P5mevVMOnTAUKLl8fVhLwjQPSO_mEv39Zflg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composite membranes for fuel-cell applications</title><source>Wiley-Blackwell Journals (Backfile Content)</source><creator>Verbrugge, Mark W. ; Hill, Robert F. ; Schneider, Eric W.</creator><creatorcontrib>Verbrugge, Mark W. ; Hill, Robert F. ; Schneider, Eric W.</creatorcontrib><description>One of the major obstacles to overcome for the realization of economical hydrogen‐oxygen, polymer‐electrolyte fuel cells is the high capital cost of the inert perfluorosulfonic acid (PSA) membranes, which provide a pathway for ionic transport between the cell electrodes. It has recently been shown that composite polymer membranes can be synthesized by depositing PSA polymers onto porous poly(tetrafluoroethyene) (PTFE) substrates. The resulting membranes are mechanically durable and quite thin relative to traditional PSA membranes; we expect the composite membranes to be of low resistance and cost. In this experimental study, we examine the composite membrane properties as a function of the membrane composition. Our results allow us to form a conceptual model to explain both the equilibrium and transport characteristics of these materials. For high PSA contents, the membrane behavior is similar to that of the PSA polymer; the water permeability, however, is reduced significantly. For intermediate PSA contents, the membranes have a high porosity and match the thickness of the PTFE substrate (≈50 μm); membranes of this composition range are potentially useful candidates for fuel cells because of their high resistance to water transport and reduced ionic resistance. Composite membranes of very low PSA content demonstrate characteristics similar to the hydrophobic PTFE substrate and are not of interest for fuel cells.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690380110</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>30 DIRECT ENERGY CONVERSION ; 300505 -- Fuel Cells-- Electrochemistry, Mass Transfer &amp; Thermodynamics ; 400105 -- Separation Procedures ; 400201 -- Chemical &amp; Physicochemical Properties ; Applied sciences ; CHEMICAL COMPOSITION ; COMPOSITE MATERIALS ; DIRECT ENERGY CONVERTERS ; ELECTROCHEMICAL CELLS ; ELECTROLYTES ; ELEMENTS ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; FUEL CELLS ; HYDROGEN ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MATERIALS ; MATERIALS TESTING ; MEMBRANES ; NONMETALS ; OXYGEN ; Polymer industry, paints, wood ; POLYMERS ; SEPARATION PROCESSES ; SOLID ELECTROLYTE FUEL CELLS ; Technology of polymers ; TESTING 300503 -- Fuel Cells-- Materials, Components, &amp; Auxiliaries</subject><ispartof>AIChE journal, 1992-01, Vol.38 (1), p.93-100</ispartof><rights>Copyright © 1992 American Institute of Chemical Engineers</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253</citedby><cites>FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690380110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690380110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,4024,27923,27924,27925,46049,46473</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5580130$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6931206$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbrugge, Mark W.</creatorcontrib><creatorcontrib>Hill, Robert F.</creatorcontrib><creatorcontrib>Schneider, Eric W.</creatorcontrib><title>Composite membranes for fuel-cell applications</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>One of the major obstacles to overcome for the realization of economical hydrogen‐oxygen, polymer‐electrolyte fuel cells is the high capital cost of the inert perfluorosulfonic acid (PSA) membranes, which provide a pathway for ionic transport between the cell electrodes. It has recently been shown that composite polymer membranes can be synthesized by depositing PSA polymers onto porous poly(tetrafluoroethyene) (PTFE) substrates. The resulting membranes are mechanically durable and quite thin relative to traditional PSA membranes; we expect the composite membranes to be of low resistance and cost. In this experimental study, we examine the composite membrane properties as a function of the membrane composition. Our results allow us to form a conceptual model to explain both the equilibrium and transport characteristics of these materials. For high PSA contents, the membrane behavior is similar to that of the PSA polymer; the water permeability, however, is reduced significantly. For intermediate PSA contents, the membranes have a high porosity and match the thickness of the PTFE substrate (≈50 μm); membranes of this composition range are potentially useful candidates for fuel cells because of their high resistance to water transport and reduced ionic resistance. Composite membranes of very low PSA content demonstrate characteristics similar to the hydrophobic PTFE substrate and are not of interest for fuel cells.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>300505 -- Fuel Cells-- Electrochemistry, Mass Transfer &amp; Thermodynamics</subject><subject>400105 -- Separation Procedures</subject><subject>400201 -- Chemical &amp; Physicochemical Properties</subject><subject>Applied sciences</subject><subject>CHEMICAL COMPOSITION</subject><subject>COMPOSITE MATERIALS</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>ELECTROCHEMICAL CELLS</subject><subject>ELECTROLYTES</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>FUEL CELLS</subject><subject>HYDROGEN</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS</subject><subject>MATERIALS TESTING</subject><subject>MEMBRANES</subject><subject>NONMETALS</subject><subject>OXYGEN</subject><subject>Polymer industry, paints, wood</subject><subject>POLYMERS</subject><subject>SEPARATION PROCESSES</subject><subject>SOLID ELECTROLYTE FUEL CELLS</subject><subject>Technology of polymers</subject><subject>TESTING 300503 -- Fuel Cells-- Materials, Components, &amp; Auxiliaries</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK4evRfx2nWSaZr2uBRdF0VBFL2FNE0w2i-aiu5_b5YuiydPwwy_N_PmEXJOYUEB2JVyepHmgBlQCgdkRnkiYp4DPyQzAKBxGNBjcuL9R-iYyNiMLIqu6TvvRhM1pikH1Rof2W6I7JepY23qOlJ9XzutRte1_pQcWVV7c7arc_Jyc_1c3Mb3j6t1sbyPdUIRYlNaW1aZYUmJXFUVCG0EVilYgSgEq1hCDYo84dpoJQynVUYri5hYyBPGcU4upr2dH530OvjT77prW6NHmeZIGaQBiidID533g7GyH1yjho2kILeJyJCI3CcS-MuJ75XXqrbhWe38XsR5wHCLiQn7drXZ_L9TLtfF3wM7Q86P5mevVMOnTAUKLl8fVhLwjQPSO_mEv39Zflg</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Verbrugge, Mark W.</creator><creator>Hill, Robert F.</creator><creator>Schneider, Eric W.</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199201</creationdate><title>Composite membranes for fuel-cell applications</title><author>Verbrugge, Mark W. ; Hill, Robert F. ; Schneider, Eric W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>300505 -- Fuel Cells-- Electrochemistry, Mass Transfer &amp; Thermodynamics</topic><topic>400105 -- Separation Procedures</topic><topic>400201 -- Chemical &amp; Physicochemical Properties</topic><topic>Applied sciences</topic><topic>CHEMICAL COMPOSITION</topic><topic>COMPOSITE MATERIALS</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>ELECTROCHEMICAL CELLS</topic><topic>ELECTROLYTES</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>FUEL CELLS</topic><topic>HYDROGEN</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS</topic><topic>MATERIALS TESTING</topic><topic>MEMBRANES</topic><topic>NONMETALS</topic><topic>OXYGEN</topic><topic>Polymer industry, paints, wood</topic><topic>POLYMERS</topic><topic>SEPARATION PROCESSES</topic><topic>SOLID ELECTROLYTE FUEL CELLS</topic><topic>Technology of polymers</topic><topic>TESTING 300503 -- Fuel Cells-- Materials, Components, &amp; Auxiliaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbrugge, Mark W.</creatorcontrib><creatorcontrib>Hill, Robert F.</creatorcontrib><creatorcontrib>Schneider, Eric W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbrugge, Mark W.</au><au>Hill, Robert F.</au><au>Schneider, Eric W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite membranes for fuel-cell applications</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1992-01</date><risdate>1992</risdate><volume>38</volume><issue>1</issue><spage>93</spage><epage>100</epage><pages>93-100</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>One of the major obstacles to overcome for the realization of economical hydrogen‐oxygen, polymer‐electrolyte fuel cells is the high capital cost of the inert perfluorosulfonic acid (PSA) membranes, which provide a pathway for ionic transport between the cell electrodes. It has recently been shown that composite polymer membranes can be synthesized by depositing PSA polymers onto porous poly(tetrafluoroethyene) (PTFE) substrates. The resulting membranes are mechanically durable and quite thin relative to traditional PSA membranes; we expect the composite membranes to be of low resistance and cost. In this experimental study, we examine the composite membrane properties as a function of the membrane composition. Our results allow us to form a conceptual model to explain both the equilibrium and transport characteristics of these materials. For high PSA contents, the membrane behavior is similar to that of the PSA polymer; the water permeability, however, is reduced significantly. For intermediate PSA contents, the membranes have a high porosity and match the thickness of the PTFE substrate (≈50 μm); membranes of this composition range are potentially useful candidates for fuel cells because of their high resistance to water transport and reduced ionic resistance. Composite membranes of very low PSA content demonstrate characteristics similar to the hydrophobic PTFE substrate and are not of interest for fuel cells.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690380110</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1992-01, Vol.38 (1), p.93-100
issn 0001-1541
1547-5905
language eng
recordid cdi_osti_scitechconnect_6931206
source Wiley-Blackwell Journals (Backfile Content)
subjects 30 DIRECT ENERGY CONVERSION
300505 -- Fuel Cells-- Electrochemistry, Mass Transfer & Thermodynamics
400105 -- Separation Procedures
400201 -- Chemical & Physicochemical Properties
Applied sciences
CHEMICAL COMPOSITION
COMPOSITE MATERIALS
DIRECT ENERGY CONVERTERS
ELECTROCHEMICAL CELLS
ELECTROLYTES
ELEMENTS
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
FUEL CELLS
HYDROGEN
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MATERIALS
MATERIALS TESTING
MEMBRANES
NONMETALS
OXYGEN
Polymer industry, paints, wood
POLYMERS
SEPARATION PROCESSES
SOLID ELECTROLYTE FUEL CELLS
Technology of polymers
TESTING 300503 -- Fuel Cells-- Materials, Components, & Auxiliaries
title Composite membranes for fuel-cell applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20membranes%20for%20fuel-cell%20applications&rft.jtitle=AIChE%20journal&rft.au=Verbrugge,%20Mark%20W.&rft.date=1992-01&rft.volume=38&rft.issue=1&rft.spage=93&rft.epage=100&rft.pages=93-100&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690380110&rft_dat=%3Cistex_osti_%3Eark_67375_WNG_03X5031K_R%3C/istex_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4130-ebffbd8e24b35add07ce73d60f733772d241e37945ceca7e51d81df334f094253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true