Loading…

Model for Treatment of Trichloroethylene by Methanotrophic Biofilms

A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental engineering (New York, N.Y.) N.Y.), 1994, Vol.120 (2), p.379-400
Main Authors: Anderson, James E, McCarty, Perry L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3
cites cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3
container_end_page 400
container_issue 2
container_start_page 379
container_title Journal of environmental engineering (New York, N.Y.)
container_volume 120
creator Anderson, James E
McCarty, Perry L
description A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).
doi_str_mv 10.1061/(ASCE)0733-9372(1994)120:2(379)
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7026895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13681993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EEqHwH1YI0eSw4PHnmgNSm6a0qFUPtBI3y-v1Kq4262A7h_z7epvSY8GX8UiP3hnpGYSOAX8BLODr_OTXcrXAktJaUUnmoBRbAMHfyJxKtXiFZqAYrWUj8Ws0e-beoncp3WMMTCg5Q8vr0Lmh6kOsbqMzeePGXIW-NN6uhxCDy-v94EZXtfvqujRmDDmG7drb6tSH3g-b9B696c2Q3IeneoTuzle3y4v66ubH5fLkqjac4lxzKa3qbGtwa2jXKcKbBmPREhBd10oA4NJ0LbHEKegNbx1rTS86cCAFyI4eoY-H3JCy18n67OzahnF0NmuJiWgUL9DxAdrG8GfnUtYbn6wbBjO6sEtaMi44FUoV8vOLJBGMAeH0nyCIBpj8H5AWskwu4PcDaGNIKbpeb6PfmLjXgPVkV-vJrp6s6cmanuzqYlcTXeyWgE9Pk0yyZuijGa1PzymU4oZhKNjvA1Yop-_DLo5FkP55s1qd3eFyBAQ_vqmU2Mc__F3h5Q0eAJ0UvJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13681993</pqid></control><display><type>article</type><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><source>ASCE Library (civil engineering)</source><creator>Anderson, James E ; McCarty, Perry L</creator><creatorcontrib>Anderson, James E ; McCarty, Perry L</creatorcontrib><description>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)0733-9372(1994)120:2(379)</identifier><identifier>CODEN: JOEEDU</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>540220 - Environment, Terrestrial- Chemicals Monitoring &amp; Transport- (1990-) ; 560300 - Chemicals Metabolism &amp; Toxicology ; BACTERIA ; BIODEGRADATION ; Biodegradation of pollutants ; Biological and medical sciences ; Biotechnology ; CHEMICAL REACTIONS ; CHLORINATED ALIPHATIC HYDROCARBONS ; DECOMPOSITION ; Environment and pollution ; ENVIRONMENTAL SCIENCES ; Fundamental and applied biological sciences. Psychology ; GROWTH ; HALOGENATED ALIPHATIC HYDROCARBONS ; Industrial applications and implications. Economical aspects ; MATHEMATICAL MODELS ; METHANOTROPHIC BACTERIA ; MICROORGANISMS ; ORGANIC CHLORINE COMPOUNDS ; ORGANIC COMPOUNDS ; ORGANIC HALOGEN COMPOUNDS ; RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT ; REMEDIAL ACTION ; TECHNICAL PAPERS ; TECHNOLOGY ASSESSMENT ; TOXICITY</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 1994, Vol.120 (2), p.379-400</ispartof><rights>Copyright © 1994 American Society of Civil Engineers</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</citedby><cites>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9372(1994)120:2(379)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(1994)120:2(379)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>230,314,780,784,885,3252,4024,10068,27923,27924,27925,76191,76199</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3308401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7026895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>McCarty, Perry L</creatorcontrib><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</description><subject>540220 - Environment, Terrestrial- Chemicals Monitoring &amp; Transport- (1990-)</subject><subject>560300 - Chemicals Metabolism &amp; Toxicology</subject><subject>BACTERIA</subject><subject>BIODEGRADATION</subject><subject>Biodegradation of pollutants</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>CHEMICAL REACTIONS</subject><subject>CHLORINATED ALIPHATIC HYDROCARBONS</subject><subject>DECOMPOSITION</subject><subject>Environment and pollution</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GROWTH</subject><subject>HALOGENATED ALIPHATIC HYDROCARBONS</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>MATHEMATICAL MODELS</subject><subject>METHANOTROPHIC BACTERIA</subject><subject>MICROORGANISMS</subject><subject>ORGANIC CHLORINE COMPOUNDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC HALOGEN COMPOUNDS</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</subject><subject>REMEDIAL ACTION</subject><subject>TECHNICAL PAPERS</subject><subject>TECHNOLOGY ASSESSMENT</subject><subject>TOXICITY</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkk1vEzEQhi0EEqHwH1YI0eSw4PHnmgNSm6a0qFUPtBI3y-v1Kq4262A7h_z7epvSY8GX8UiP3hnpGYSOAX8BLODr_OTXcrXAktJaUUnmoBRbAMHfyJxKtXiFZqAYrWUj8Ws0e-beoncp3WMMTCg5Q8vr0Lmh6kOsbqMzeePGXIW-NN6uhxCDy-v94EZXtfvqujRmDDmG7drb6tSH3g-b9B696c2Q3IeneoTuzle3y4v66ubH5fLkqjac4lxzKa3qbGtwa2jXKcKbBmPREhBd10oA4NJ0LbHEKegNbx1rTS86cCAFyI4eoY-H3JCy18n67OzahnF0NmuJiWgUL9DxAdrG8GfnUtYbn6wbBjO6sEtaMi44FUoV8vOLJBGMAeH0nyCIBpj8H5AWskwu4PcDaGNIKbpeb6PfmLjXgPVkV-vJrp6s6cmanuzqYlcTXeyWgE9Pk0yyZuijGa1PzymU4oZhKNjvA1Yop-_DLo5FkP55s1qd3eFyBAQ_vqmU2Mc__F3h5Q0eAJ0UvJM</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Anderson, James E</creator><creator>McCarty, Perry L</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7QO</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>1994</creationdate><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><author>Anderson, James E ; McCarty, Perry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>540220 - Environment, Terrestrial- Chemicals Monitoring &amp; Transport- (1990-)</topic><topic>560300 - Chemicals Metabolism &amp; Toxicology</topic><topic>BACTERIA</topic><topic>BIODEGRADATION</topic><topic>Biodegradation of pollutants</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>CHEMICAL REACTIONS</topic><topic>CHLORINATED ALIPHATIC HYDROCARBONS</topic><topic>DECOMPOSITION</topic><topic>Environment and pollution</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GROWTH</topic><topic>HALOGENATED ALIPHATIC HYDROCARBONS</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>MATHEMATICAL MODELS</topic><topic>METHANOTROPHIC BACTERIA</topic><topic>MICROORGANISMS</topic><topic>ORGANIC CHLORINE COMPOUNDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC HALOGEN COMPOUNDS</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</topic><topic>REMEDIAL ACTION</topic><topic>TECHNICAL PAPERS</topic><topic>TECHNOLOGY ASSESSMENT</topic><topic>TOXICITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>McCarty, Perry L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, James E</au><au>McCarty, Perry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>1994</date><risdate>1994</risdate><volume>120</volume><issue>2</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>0733-9372</issn><eissn>1943-7870</eissn><coden>JOEEDU</coden><abstract>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9372(1994)120:2(379)</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9372
ispartof Journal of environmental engineering (New York, N.Y.), 1994, Vol.120 (2), p.379-400
issn 0733-9372
1943-7870
language eng
recordid cdi_osti_scitechconnect_7026895
source ASCE Library (civil engineering)
subjects 540220 - Environment, Terrestrial- Chemicals Monitoring & Transport- (1990-)
560300 - Chemicals Metabolism & Toxicology
BACTERIA
BIODEGRADATION
Biodegradation of pollutants
Biological and medical sciences
Biotechnology
CHEMICAL REACTIONS
CHLORINATED ALIPHATIC HYDROCARBONS
DECOMPOSITION
Environment and pollution
ENVIRONMENTAL SCIENCES
Fundamental and applied biological sciences. Psychology
GROWTH
HALOGENATED ALIPHATIC HYDROCARBONS
Industrial applications and implications. Economical aspects
MATHEMATICAL MODELS
METHANOTROPHIC BACTERIA
MICROORGANISMS
ORGANIC CHLORINE COMPOUNDS
ORGANIC COMPOUNDS
ORGANIC HALOGEN COMPOUNDS
RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT
REMEDIAL ACTION
TECHNICAL PAPERS
TECHNOLOGY ASSESSMENT
TOXICITY
title Model for Treatment of Trichloroethylene by Methanotrophic Biofilms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20Treatment%20of%20Trichloroethylene%20by%20Methanotrophic%20Biofilms&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Anderson,%20James%20E&rft.date=1994&rft.volume=120&rft.issue=2&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=0733-9372&rft.eissn=1943-7870&rft.coden=JOEEDU&rft_id=info:doi/10.1061/(ASCE)0733-9372(1994)120:2(379)&rft_dat=%3Cproquest_osti_%3E13681993%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13681993&rft_id=info:pmid/&rfr_iscdi=true