Loading…
Model for Treatment of Trichloroethylene by Methanotrophic Biofilms
A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, a...
Saved in:
Published in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 1994, Vol.120 (2), p.379-400 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3 |
container_end_page | 400 |
container_issue | 2 |
container_start_page | 379 |
container_title | Journal of environmental engineering (New York, N.Y.) |
container_volume | 120 |
creator | Anderson, James E McCarty, Perry L |
description | A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs). |
doi_str_mv | 10.1061/(ASCE)0733-9372(1994)120:2(379) |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7026895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13681993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EEqHwH1YI0eSw4PHnmgNSm6a0qFUPtBI3y-v1Kq4262A7h_z7epvSY8GX8UiP3hnpGYSOAX8BLODr_OTXcrXAktJaUUnmoBRbAMHfyJxKtXiFZqAYrWUj8Ws0e-beoncp3WMMTCg5Q8vr0Lmh6kOsbqMzeePGXIW-NN6uhxCDy-v94EZXtfvqujRmDDmG7drb6tSH3g-b9B696c2Q3IeneoTuzle3y4v66ubH5fLkqjac4lxzKa3qbGtwa2jXKcKbBmPREhBd10oA4NJ0LbHEKegNbx1rTS86cCAFyI4eoY-H3JCy18n67OzahnF0NmuJiWgUL9DxAdrG8GfnUtYbn6wbBjO6sEtaMi44FUoV8vOLJBGMAeH0nyCIBpj8H5AWskwu4PcDaGNIKbpeb6PfmLjXgPVkV-vJrp6s6cmanuzqYlcTXeyWgE9Pk0yyZuijGa1PzymU4oZhKNjvA1Yop-_DLo5FkP55s1qd3eFyBAQ_vqmU2Mc__F3h5Q0eAJ0UvJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13681993</pqid></control><display><type>article</type><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><source>ASCE Library (civil engineering)</source><creator>Anderson, James E ; McCarty, Perry L</creator><creatorcontrib>Anderson, James E ; McCarty, Perry L</creatorcontrib><description>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)0733-9372(1994)120:2(379)</identifier><identifier>CODEN: JOEEDU</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>540220 - Environment, Terrestrial- Chemicals Monitoring & Transport- (1990-) ; 560300 - Chemicals Metabolism & Toxicology ; BACTERIA ; BIODEGRADATION ; Biodegradation of pollutants ; Biological and medical sciences ; Biotechnology ; CHEMICAL REACTIONS ; CHLORINATED ALIPHATIC HYDROCARBONS ; DECOMPOSITION ; Environment and pollution ; ENVIRONMENTAL SCIENCES ; Fundamental and applied biological sciences. Psychology ; GROWTH ; HALOGENATED ALIPHATIC HYDROCARBONS ; Industrial applications and implications. Economical aspects ; MATHEMATICAL MODELS ; METHANOTROPHIC BACTERIA ; MICROORGANISMS ; ORGANIC CHLORINE COMPOUNDS ; ORGANIC COMPOUNDS ; ORGANIC HALOGEN COMPOUNDS ; RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT ; REMEDIAL ACTION ; TECHNICAL PAPERS ; TECHNOLOGY ASSESSMENT ; TOXICITY</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 1994, Vol.120 (2), p.379-400</ispartof><rights>Copyright © 1994 American Society of Civil Engineers</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</citedby><cites>FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9372(1994)120:2(379)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(1994)120:2(379)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>230,314,780,784,885,3252,4024,10068,27923,27924,27925,76191,76199</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3308401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7026895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>McCarty, Perry L</creatorcontrib><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</description><subject>540220 - Environment, Terrestrial- Chemicals Monitoring & Transport- (1990-)</subject><subject>560300 - Chemicals Metabolism & Toxicology</subject><subject>BACTERIA</subject><subject>BIODEGRADATION</subject><subject>Biodegradation of pollutants</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>CHEMICAL REACTIONS</subject><subject>CHLORINATED ALIPHATIC HYDROCARBONS</subject><subject>DECOMPOSITION</subject><subject>Environment and pollution</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GROWTH</subject><subject>HALOGENATED ALIPHATIC HYDROCARBONS</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>MATHEMATICAL MODELS</subject><subject>METHANOTROPHIC BACTERIA</subject><subject>MICROORGANISMS</subject><subject>ORGANIC CHLORINE COMPOUNDS</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC HALOGEN COMPOUNDS</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</subject><subject>REMEDIAL ACTION</subject><subject>TECHNICAL PAPERS</subject><subject>TECHNOLOGY ASSESSMENT</subject><subject>TOXICITY</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkk1vEzEQhi0EEqHwH1YI0eSw4PHnmgNSm6a0qFUPtBI3y-v1Kq4262A7h_z7epvSY8GX8UiP3hnpGYSOAX8BLODr_OTXcrXAktJaUUnmoBRbAMHfyJxKtXiFZqAYrWUj8Ws0e-beoncp3WMMTCg5Q8vr0Lmh6kOsbqMzeePGXIW-NN6uhxCDy-v94EZXtfvqujRmDDmG7drb6tSH3g-b9B696c2Q3IeneoTuzle3y4v66ubH5fLkqjac4lxzKa3qbGtwa2jXKcKbBmPREhBd10oA4NJ0LbHEKegNbx1rTS86cCAFyI4eoY-H3JCy18n67OzahnF0NmuJiWgUL9DxAdrG8GfnUtYbn6wbBjO6sEtaMi44FUoV8vOLJBGMAeH0nyCIBpj8H5AWskwu4PcDaGNIKbpeb6PfmLjXgPVkV-vJrp6s6cmanuzqYlcTXeyWgE9Pk0yyZuijGa1PzymU4oZhKNjvA1Yop-_DLo5FkP55s1qd3eFyBAQ_vqmU2Mc__F3h5Q0eAJ0UvJM</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Anderson, James E</creator><creator>McCarty, Perry L</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7QO</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>1994</creationdate><title>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</title><author>Anderson, James E ; McCarty, Perry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>540220 - Environment, Terrestrial- Chemicals Monitoring & Transport- (1990-)</topic><topic>560300 - Chemicals Metabolism & Toxicology</topic><topic>BACTERIA</topic><topic>BIODEGRADATION</topic><topic>Biodegradation of pollutants</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>CHEMICAL REACTIONS</topic><topic>CHLORINATED ALIPHATIC HYDROCARBONS</topic><topic>DECOMPOSITION</topic><topic>Environment and pollution</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GROWTH</topic><topic>HALOGENATED ALIPHATIC HYDROCARBONS</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>MATHEMATICAL MODELS</topic><topic>METHANOTROPHIC BACTERIA</topic><topic>MICROORGANISMS</topic><topic>ORGANIC CHLORINE COMPOUNDS</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC HALOGEN COMPOUNDS</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</topic><topic>REMEDIAL ACTION</topic><topic>TECHNICAL PAPERS</topic><topic>TECHNOLOGY ASSESSMENT</topic><topic>TOXICITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>McCarty, Perry L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, James E</au><au>McCarty, Perry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model for Treatment of Trichloroethylene by Methanotrophic Biofilms</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>1994</date><risdate>1994</risdate><volume>120</volume><issue>2</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>0733-9372</issn><eissn>1943-7870</eissn><coden>JOEEDU</coden><abstract>A biofilm model for the cometabolic degradation of trichloroethylene (TCE) by methane oxidizing (methanotrophic) bacteria is derived. Methane utilization and TCE transformation were modeled using diffusive mass transport, Monod kinetics, competitive inhibition, TCE transformation product toxicity, and growth, decay and inactivation of the methanotrophic bacteria. Reported low rates of TCE degradation by biofilms were found to be compatible with the high rates found in dispersed growth studies. The slower rates result from phenomena inherent in biofilms, and not necessarily from a difference in performance characteristics of the organisms. The possibility that biofilms may not be copper-limited is also considered. Other model predictions include an optimum methane concentration that maximizes TCE flux. Also, survival of a biofilm should only occur when the methane concentration is above a certain minimum value (Smin), which is linearly related to TCE concentration. The model is general and can be applied to other primary substrates and chlorinated aliphatic hydrocarbons (CAHs).</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9372(1994)120:2(379)</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9372 |
ispartof | Journal of environmental engineering (New York, N.Y.), 1994, Vol.120 (2), p.379-400 |
issn | 0733-9372 1943-7870 |
language | eng |
recordid | cdi_osti_scitechconnect_7026895 |
source | ASCE Library (civil engineering) |
subjects | 540220 - Environment, Terrestrial- Chemicals Monitoring & Transport- (1990-) 560300 - Chemicals Metabolism & Toxicology BACTERIA BIODEGRADATION Biodegradation of pollutants Biological and medical sciences Biotechnology CHEMICAL REACTIONS CHLORINATED ALIPHATIC HYDROCARBONS DECOMPOSITION Environment and pollution ENVIRONMENTAL SCIENCES Fundamental and applied biological sciences. Psychology GROWTH HALOGENATED ALIPHATIC HYDROCARBONS Industrial applications and implications. Economical aspects MATHEMATICAL MODELS METHANOTROPHIC BACTERIA MICROORGANISMS ORGANIC CHLORINE COMPOUNDS ORGANIC COMPOUNDS ORGANIC HALOGEN COMPOUNDS RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT REMEDIAL ACTION TECHNICAL PAPERS TECHNOLOGY ASSESSMENT TOXICITY |
title | Model for Treatment of Trichloroethylene by Methanotrophic Biofilms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20for%20Treatment%20of%20Trichloroethylene%20by%20Methanotrophic%20Biofilms&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Anderson,%20James%20E&rft.date=1994&rft.volume=120&rft.issue=2&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=0733-9372&rft.eissn=1943-7870&rft.coden=JOEEDU&rft_id=info:doi/10.1061/(ASCE)0733-9372(1994)120:2(379)&rft_dat=%3Cproquest_osti_%3E13681993%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a530t-577c9dcba0ba3dd92588006b216ddb711157adb2c2e91fa5be4baf6d1e17617d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13681993&rft_id=info:pmid/&rfr_iscdi=true |