Loading…
Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature
Some deductions have been made from fractographic evidence about mechanisms of low‐cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830°C, fatigue appears to be confined to the crack wake, where attrition reduces the...
Saved in:
Published in: | Journal of the American Ceramic Society 1994-03, Vol.77 (3), p.792-800 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13 |
container_end_page | 800 |
container_issue | 3 |
container_start_page | 792 |
container_title | Journal of the American Ceramic Society |
container_volume | 77 |
creator | Morris, Winfred L. Cox, Brian N. Marshall, David B. Inman, Richard V. James, Michael R. |
description | Some deductions have been made from fractographic evidence about mechanisms of low‐cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830°C, fatigue appears to be confined to the crack wake, where attrition reduces the efficacy of bridging fibers. It is inferred that the crack tip advances at some critical value of the crack tip stress intensity factor, as in monotonic growth, rather than by any intrinsic fatigue mechanism in the matrix. However, the manifestations of attrition are very different at room and high temperatures. At high temperature, wear is greatly accelerated by the action of SiC debris within the crack. This distinction is rationalized in terms of the temperature dependence expected in the opening displacement of a bridged crack. This argument leads in turn to plausible explanations of trends in loadlife curves and the morphology of cracks as the temperature rises. |
doi_str_mv | 10.1111/j.1151-2916.1994.tb05367.x |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7046350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745678446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13</originalsourceid><addsrcrecordid>eNqVkU9vEzEQxS0EEiHwHVYVgtOm9tper7mgdtWkRKUIKKrExZp4J43D_sPeiPTb49VGPSLhy2jsn9-M3iPkjNEFi-d8H4tkaaZZvmBai8WwoZLnanF8RmZMnp6ekxmlNEtVkdGX5FUI-9gyXYgZWS9hcA8HTD6j3UHrQhMS1yYrD_3ODXj-3ZVJ2TV9F2IXEhiSb13XJNBWybV72CV32PToYTh4fE1ebKEO-OZU5-TH8uquvE5vvqw-lRc3qRVKZKlGa1UhgamN2lYFrRRXqDnnlQIBCLaiNl5ioTO5EbSqlAREC1xLVuQbxufkbNLtwuBMsHExu7Nd26IdjKIi55JG6P0E9b77fcAwmMYFi3UNLXaHYJSQuSpEhOfk3T_JLOdaMJFF8MMEWt-F4HFreu8a8I-GUTOmYfZmTMOMlpsxDXNKwxzj57enKRAs1FsPrXXhSYFrpWk0YU4-TtgfV-Pjfwww64vySulxy3RScGHA45MC-F8mj05Lc3-7Mrc_88v7r0tp1vwvPMytHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26394142</pqid></control><display><type>article</type><title>Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature</title><source>Wiley-Blackwell Materials Science Backfiles</source><creator>Morris, Winfred L. ; Cox, Brian N. ; Marshall, David B. ; Inman, Richard V. ; James, Michael R.</creator><creatorcontrib>Morris, Winfred L. ; Cox, Brian N. ; Marshall, David B. ; Inman, Richard V. ; James, Michael R.</creatorcontrib><description>Some deductions have been made from fractographic evidence about mechanisms of low‐cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830°C, fatigue appears to be confined to the crack wake, where attrition reduces the efficacy of bridging fibers. It is inferred that the crack tip advances at some critical value of the crack tip stress intensity factor, as in monotonic growth, rather than by any intrinsic fatigue mechanism in the matrix. However, the manifestations of attrition are very different at room and high temperatures. At high temperature, wear is greatly accelerated by the action of SiC debris within the crack. This distinction is rationalized in terms of the temperature dependence expected in the opening displacement of a bridged crack. This argument leads in turn to plausible explanations of trends in loadlife curves and the morphology of cracks as the temperature rises.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1994.tb05367.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360603 - Materials- Properties ; Applied sciences ; Building materials. Ceramics. Glasses ; CARBIDES ; CARBON ; CARBON COMPOUNDS ; Ceramic industries ; Chemical industry and chemicals ; COMPOSITE MATERIALS ; CRACK PROPAGATION ; ELEMENTAL MINERALS ; ELEMENTS ; Exact sciences and technology ; FATIGUE ; Fatigue of materials ; Grain boundaries ; GRAPHITE ; High temperature effects ; MATERIALS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; MINERALS ; Miscellaneous ; Morphology ; NONMETALS ; Residual stresses ; Silicon carbide ; SILICON CARBIDES ; SILICON COMPOUNDS ; Technical ceramics ; TEMPERATURE DEPENDENCE ; Vacuum applications ; Wear of materials</subject><ispartof>Journal of the American Ceramic Society, 1994-03, Vol.77 (3), p.792-800</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13</citedby><cites>FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1994.tb05367.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1994.tb05367.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1415,27901,27902,46413,46837</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3979093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7046350$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Winfred L.</creatorcontrib><creatorcontrib>Cox, Brian N.</creatorcontrib><creatorcontrib>Marshall, David B.</creatorcontrib><creatorcontrib>Inman, Richard V.</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><title>Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature</title><title>Journal of the American Ceramic Society</title><description>Some deductions have been made from fractographic evidence about mechanisms of low‐cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830°C, fatigue appears to be confined to the crack wake, where attrition reduces the efficacy of bridging fibers. It is inferred that the crack tip advances at some critical value of the crack tip stress intensity factor, as in monotonic growth, rather than by any intrinsic fatigue mechanism in the matrix. However, the manifestations of attrition are very different at room and high temperatures. At high temperature, wear is greatly accelerated by the action of SiC debris within the crack. This distinction is rationalized in terms of the temperature dependence expected in the opening displacement of a bridged crack. This argument leads in turn to plausible explanations of trends in loadlife curves and the morphology of cracks as the temperature rises.</description><subject>360603 - Materials- Properties</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>CARBIDES</subject><subject>CARBON</subject><subject>CARBON COMPOUNDS</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>COMPOSITE MATERIALS</subject><subject>CRACK PROPAGATION</subject><subject>ELEMENTAL MINERALS</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FATIGUE</subject><subject>Fatigue of materials</subject><subject>Grain boundaries</subject><subject>GRAPHITE</subject><subject>High temperature effects</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>MINERALS</subject><subject>Miscellaneous</subject><subject>Morphology</subject><subject>NONMETALS</subject><subject>Residual stresses</subject><subject>Silicon carbide</subject><subject>SILICON CARBIDES</subject><subject>SILICON COMPOUNDS</subject><subject>Technical ceramics</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Vacuum applications</subject><subject>Wear of materials</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkU9vEzEQxS0EEiHwHVYVgtOm9tper7mgdtWkRKUIKKrExZp4J43D_sPeiPTb49VGPSLhy2jsn9-M3iPkjNEFi-d8H4tkaaZZvmBai8WwoZLnanF8RmZMnp6ekxmlNEtVkdGX5FUI-9gyXYgZWS9hcA8HTD6j3UHrQhMS1yYrD_3ODXj-3ZVJ2TV9F2IXEhiSb13XJNBWybV72CV32PToYTh4fE1ebKEO-OZU5-TH8uquvE5vvqw-lRc3qRVKZKlGa1UhgamN2lYFrRRXqDnnlQIBCLaiNl5ioTO5EbSqlAREC1xLVuQbxufkbNLtwuBMsHExu7Nd26IdjKIi55JG6P0E9b77fcAwmMYFi3UNLXaHYJSQuSpEhOfk3T_JLOdaMJFF8MMEWt-F4HFreu8a8I-GUTOmYfZmTMOMlpsxDXNKwxzj57enKRAs1FsPrXXhSYFrpWk0YU4-TtgfV-Pjfwww64vySulxy3RScGHA45MC-F8mj05Lc3-7Mrc_88v7r0tp1vwvPMytHA</recordid><startdate>199403</startdate><enddate>199403</enddate><creator>Morris, Winfred L.</creator><creator>Cox, Brian N.</creator><creator>Marshall, David B.</creator><creator>Inman, Richard V.</creator><creator>James, Michael R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7TC</scope><scope>OTOTI</scope></search><sort><creationdate>199403</creationdate><title>Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature</title><author>Morris, Winfred L. ; Cox, Brian N. ; Marshall, David B. ; Inman, Richard V. ; James, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360603 - Materials- Properties</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>CARBIDES</topic><topic>CARBON</topic><topic>CARBON COMPOUNDS</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>COMPOSITE MATERIALS</topic><topic>CRACK PROPAGATION</topic><topic>ELEMENTAL MINERALS</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FATIGUE</topic><topic>Fatigue of materials</topic><topic>Grain boundaries</topic><topic>GRAPHITE</topic><topic>High temperature effects</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>MINERALS</topic><topic>Miscellaneous</topic><topic>Morphology</topic><topic>NONMETALS</topic><topic>Residual stresses</topic><topic>Silicon carbide</topic><topic>SILICON CARBIDES</topic><topic>SILICON COMPOUNDS</topic><topic>Technical ceramics</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Vacuum applications</topic><topic>Wear of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Winfred L.</creatorcontrib><creatorcontrib>Cox, Brian N.</creatorcontrib><creatorcontrib>Marshall, David B.</creatorcontrib><creatorcontrib>Inman, Richard V.</creatorcontrib><creatorcontrib>James, Michael R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Winfred L.</au><au>Cox, Brian N.</au><au>Marshall, David B.</au><au>Inman, Richard V.</au><au>James, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1994-03</date><risdate>1994</risdate><volume>77</volume><issue>3</issue><spage>792</spage><epage>800</epage><pages>792-800</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Some deductions have been made from fractographic evidence about mechanisms of low‐cycle mechanical fatigue in plain woven graphite/SiC composites at room and high temperature in vacuum. At both room temperature and 830°C, fatigue appears to be confined to the crack wake, where attrition reduces the efficacy of bridging fibers. It is inferred that the crack tip advances at some critical value of the crack tip stress intensity factor, as in monotonic growth, rather than by any intrinsic fatigue mechanism in the matrix. However, the manifestations of attrition are very different at room and high temperatures. At high temperature, wear is greatly accelerated by the action of SiC debris within the crack. This distinction is rationalized in terms of the temperature dependence expected in the opening displacement of a bridged crack. This argument leads in turn to plausible explanations of trends in loadlife curves and the morphology of cracks as the temperature rises.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1994.tb05367.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1994-03, Vol.77 (3), p.792-800 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_7046350 |
source | Wiley-Blackwell Materials Science Backfiles |
subjects | 360603 - Materials- Properties Applied sciences Building materials. Ceramics. Glasses CARBIDES CARBON CARBON COMPOUNDS Ceramic industries Chemical industry and chemicals COMPOSITE MATERIALS CRACK PROPAGATION ELEMENTAL MINERALS ELEMENTS Exact sciences and technology FATIGUE Fatigue of materials Grain boundaries GRAPHITE High temperature effects MATERIALS MATERIALS SCIENCE MECHANICAL PROPERTIES MINERALS Miscellaneous Morphology NONMETALS Residual stresses Silicon carbide SILICON CARBIDES SILICON COMPOUNDS Technical ceramics TEMPERATURE DEPENDENCE Vacuum applications Wear of materials |
title | Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Mechanisms%20in%20Graphite/SiC%20Composites%20at%20Room%20and%20High%20Temperature&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Morris,%20Winfred%20L.&rft.date=1994-03&rft.volume=77&rft.issue=3&rft.spage=792&rft.epage=800&rft.pages=792-800&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1994.tb05367.x&rft_dat=%3Cproquest_osti_%3E745678446%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4742-9ecc785a17b7fd80d737e9333d7a4aeacd0c0d7e8925b40dd75aeeca395186b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26394142&rft_id=info:pmid/&rfr_iscdi=true |