Loading…

Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing

Monoclinic ZrO2 has been milled for various times down to a crystallite size of 145 Å. Using the time‐differential perturbed‐angular‐correlation technique, it was possible to associate the resulting growing amount of disordered material with two different, very distributed and milling‐time‐dependent...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 1994-06, Vol.77 (6), p.1525-1530
Main Authors: Scian, Alberto N., Aglietti, Esteban F., Caracoche, María C., Rivas, Patricia C., Pasquevich, Alberto F., López García, Alberto R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183
cites cdi_FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183
container_end_page 1530
container_issue 6
container_start_page 1525
container_title Journal of the American Ceramic Society
container_volume 77
creator Scian, Alberto N.
Aglietti, Esteban F.
Caracoche, María C.
Rivas, Patricia C.
Pasquevich, Alberto F.
López García, Alberto R.
description Monoclinic ZrO2 has been milled for various times down to a crystallite size of 145 Å. Using the time‐differential perturbed‐angular‐correlation technique, it was possible to associate the resulting growing amount of disordered material with two different, very distributed and milling‐time‐dependent hyperfine interactions: one (Y) of quadrupole frequency similar to that of tetragonal zirconia after long milling, the other (X) one of a quadrupole frequency similar to that of monoclinic zirconia at shorter milling times. Upon annealing, all samples showed the recovery of the crystalline monoclinic phase at the expense of the disordered structures. In samples milled for shorter times, the (Y) interaction emerges as an ordered crystallization product, upon annealing at temperatures which depend nearly linearly on the crystallite size.
doi_str_mv 10.1111/j.1151-2916.1994.tb09752.x
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7072158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26502769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183</originalsourceid><addsrcrecordid>eNqVkM1uGyEUhVHVSnXTvgOKqu7G4WeAoataVuokctJIcRWpGwQM0-COIYWxYr99GY2VfdlcofNx7uEAcI7RHJdzsS2D4YpIzOdYyno-GCQFI_PDGzDD7CS9BTOEEKlEQ9B78CHnbbli2dQz8Hj_pLODm6RD7mLa6cHHkKEP8DaGaHsfvIW_fLIxeA2Xep9dC80R3vq-aL-hDi182Jvs_u5dGOAiBKdH4SN41-k-u0-neQZ-fr_cLK-q9Y_V9XKxrmwtJKscc9oyKlHTMdtyWnOjXc2lsYZ1LdXGiLaxTiDUMlqXv1iiKW-6kp9Sgxt6Bs4n35gHr7L1g7NPJWxwdlACCYLZCH2ZoOcUS848qJ3P1vW9Di7usyKcISK4LODXCbQp5pxcp56T3-l0VBipsXC1VWPhamxVjYWrU-HqUB5_Pm3R2eq-K5Van18dakwoZqJg3ybsxffu-B8L1M1ieYkZYcWimix8Htzh1UKnP4oLKph6vFspwVd3bEOu1Jr-A3KTpJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26502769</pqid></control><display><type>article</type><title>Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing</title><source>Wiley-Blackwell Materials Science Backfiles</source><creator>Scian, Alberto N. ; Aglietti, Esteban F. ; Caracoche, María C. ; Rivas, Patricia C. ; Pasquevich, Alberto F. ; López García, Alberto R.</creator><creatorcontrib>Scian, Alberto N. ; Aglietti, Esteban F. ; Caracoche, María C. ; Rivas, Patricia C. ; Pasquevich, Alberto F. ; López García, Alberto R.</creatorcontrib><description>Monoclinic ZrO2 has been milled for various times down to a crystallite size of 145 Å. Using the time‐differential perturbed‐angular‐correlation technique, it was possible to associate the resulting growing amount of disordered material with two different, very distributed and milling‐time‐dependent hyperfine interactions: one (Y) of quadrupole frequency similar to that of tetragonal zirconia after long milling, the other (X) one of a quadrupole frequency similar to that of monoclinic zirconia at shorter milling times. Upon annealing, all samples showed the recovery of the crystalline monoclinic phase at the expense of the disordered structures. In samples milled for shorter times, the (Y) interaction emerges as an ordered crystallization product, upon annealing at temperatures which depend nearly linearly on the crystallite size.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1994.tb09752.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies ; ANNEALING ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; CHALCOGENIDES ; Chemical industry and chemicals ; CRYSTAL-PHASE TRANSFORMATIONS ; DATA ; Exact sciences and technology ; EXPERIMENTAL DATA ; HEAT TREATMENTS ; INFORMATION ; MACHINING ; MATERIALS SCIENCE ; MILLING ; Miscellaneous ; NUMERICAL DATA ; OXIDES ; OXYGEN COMPOUNDS ; PHASE TRANSFORMATIONS ; Technical ceramics ; TRANSITION ELEMENT COMPOUNDS ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Journal of the American Ceramic Society, 1994-06, Vol.77 (6), p.1525-1530</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183</citedby><cites>FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1994.tb09752.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1994.tb09752.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1421,27924,27925,46438,46862</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4123157$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7072158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scian, Alberto N.</creatorcontrib><creatorcontrib>Aglietti, Esteban F.</creatorcontrib><creatorcontrib>Caracoche, María C.</creatorcontrib><creatorcontrib>Rivas, Patricia C.</creatorcontrib><creatorcontrib>Pasquevich, Alberto F.</creatorcontrib><creatorcontrib>López García, Alberto R.</creatorcontrib><title>Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing</title><title>Journal of the American Ceramic Society</title><description>Monoclinic ZrO2 has been milled for various times down to a crystallite size of 145 Å. Using the time‐differential perturbed‐angular‐correlation technique, it was possible to associate the resulting growing amount of disordered material with two different, very distributed and milling‐time‐dependent hyperfine interactions: one (Y) of quadrupole frequency similar to that of tetragonal zirconia after long milling, the other (X) one of a quadrupole frequency similar to that of monoclinic zirconia at shorter milling times. Upon annealing, all samples showed the recovery of the crystalline monoclinic phase at the expense of the disordered structures. In samples milled for shorter times, the (Y) interaction emerges as an ordered crystallization product, upon annealing at temperatures which depend nearly linearly on the crystallite size.</description><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>CHALCOGENIDES</subject><subject>Chemical industry and chemicals</subject><subject>CRYSTAL-PHASE TRANSFORMATIONS</subject><subject>DATA</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>HEAT TREATMENTS</subject><subject>INFORMATION</subject><subject>MACHINING</subject><subject>MATERIALS SCIENCE</subject><subject>MILLING</subject><subject>Miscellaneous</subject><subject>NUMERICAL DATA</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Technical ceramics</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkM1uGyEUhVHVSnXTvgOKqu7G4WeAoataVuokctJIcRWpGwQM0-COIYWxYr99GY2VfdlcofNx7uEAcI7RHJdzsS2D4YpIzOdYyno-GCQFI_PDGzDD7CS9BTOEEKlEQ9B78CHnbbli2dQz8Hj_pLODm6RD7mLa6cHHkKEP8DaGaHsfvIW_fLIxeA2Xep9dC80R3vq-aL-hDi182Jvs_u5dGOAiBKdH4SN41-k-u0-neQZ-fr_cLK-q9Y_V9XKxrmwtJKscc9oyKlHTMdtyWnOjXc2lsYZ1LdXGiLaxTiDUMlqXv1iiKW-6kp9Sgxt6Bs4n35gHr7L1g7NPJWxwdlACCYLZCH2ZoOcUS848qJ3P1vW9Di7usyKcISK4LODXCbQp5pxcp56T3-l0VBipsXC1VWPhamxVjYWrU-HqUB5_Pm3R2eq-K5Van18dakwoZqJg3ybsxffu-B8L1M1ieYkZYcWimix8Htzh1UKnP4oLKph6vFspwVd3bEOu1Jr-A3KTpJ4</recordid><startdate>199406</startdate><enddate>199406</enddate><creator>Scian, Alberto N.</creator><creator>Aglietti, Esteban F.</creator><creator>Caracoche, María C.</creator><creator>Rivas, Patricia C.</creator><creator>Pasquevich, Alberto F.</creator><creator>López García, Alberto R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>199406</creationdate><title>Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing</title><author>Scian, Alberto N. ; Aglietti, Esteban F. ; Caracoche, María C. ; Rivas, Patricia C. ; Pasquevich, Alberto F. ; López García, Alberto R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>CHALCOGENIDES</topic><topic>Chemical industry and chemicals</topic><topic>CRYSTAL-PHASE TRANSFORMATIONS</topic><topic>DATA</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>HEAT TREATMENTS</topic><topic>INFORMATION</topic><topic>MACHINING</topic><topic>MATERIALS SCIENCE</topic><topic>MILLING</topic><topic>Miscellaneous</topic><topic>NUMERICAL DATA</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Technical ceramics</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scian, Alberto N.</creatorcontrib><creatorcontrib>Aglietti, Esteban F.</creatorcontrib><creatorcontrib>Caracoche, María C.</creatorcontrib><creatorcontrib>Rivas, Patricia C.</creatorcontrib><creatorcontrib>Pasquevich, Alberto F.</creatorcontrib><creatorcontrib>López García, Alberto R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scian, Alberto N.</au><au>Aglietti, Esteban F.</au><au>Caracoche, María C.</au><au>Rivas, Patricia C.</au><au>Pasquevich, Alberto F.</au><au>López García, Alberto R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1994-06</date><risdate>1994</risdate><volume>77</volume><issue>6</issue><spage>1525</spage><epage>1530</epage><pages>1525-1530</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Monoclinic ZrO2 has been milled for various times down to a crystallite size of 145 Å. Using the time‐differential perturbed‐angular‐correlation technique, it was possible to associate the resulting growing amount of disordered material with two different, very distributed and milling‐time‐dependent hyperfine interactions: one (Y) of quadrupole frequency similar to that of tetragonal zirconia after long milling, the other (X) one of a quadrupole frequency similar to that of monoclinic zirconia at shorter milling times. Upon annealing, all samples showed the recovery of the crystalline monoclinic phase at the expense of the disordered structures. In samples milled for shorter times, the (Y) interaction emerges as an ordered crystallization product, upon annealing at temperatures which depend nearly linearly on the crystallite size.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1994.tb09752.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1994-06, Vol.77 (6), p.1525-1530
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_7072158
source Wiley-Blackwell Materials Science Backfiles
subjects 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies
ANNEALING
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
CHALCOGENIDES
Chemical industry and chemicals
CRYSTAL-PHASE TRANSFORMATIONS
DATA
Exact sciences and technology
EXPERIMENTAL DATA
HEAT TREATMENTS
INFORMATION
MACHINING
MATERIALS SCIENCE
MILLING
Miscellaneous
NUMERICAL DATA
OXIDES
OXYGEN COMPOUNDS
PHASE TRANSFORMATIONS
Technical ceramics
TRANSITION ELEMENT COMPOUNDS
ZIRCONIUM COMPOUNDS
ZIRCONIUM OXIDES
title Phase Transformations in Monoclinic Zirconia Caused by Milling and Subsequent Annealing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Transformations%20in%20Monoclinic%20Zirconia%20Caused%20by%20Milling%20and%20Subsequent%20Annealing&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Scian,%20Alberto%20N.&rft.date=1994-06&rft.volume=77&rft.issue=6&rft.spage=1525&rft.epage=1530&rft.pages=1525-1530&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1994.tb09752.x&rft_dat=%3Cproquest_osti_%3E26502769%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4795-e5eac53908f5cd6346bae469bcb5fd3abb7d8ce700d534291c2a368f00033b183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26502769&rft_id=info:pmid/&rfr_iscdi=true