Loading…
Fluid–fluid phase separations in nonadditive hard sphere mixtures
We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem....
Saved in:
Published in: | The Journal of chemical physics 1995-01, Vol.102 (3), p.1349-1360 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3 |
container_end_page | 1360 |
container_issue | 3 |
container_start_page | 1349 |
container_title | The Journal of chemical physics |
container_volume | 102 |
creator | Jung, Jinkyung Jhon, Mu Shik Ree, Francis H. |
description | We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact. |
doi_str_mv | 10.1063/1.468921 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7082733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_468921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</originalsourceid><addsrcrecordid>eNotkMtKAzEUQIMoWKvgJwRXbqbem9Q8ljJYFQpudB0yeTCRdmZIUtGd_-Af-iVa6upsDmdxCLlEWCAIfoOLpVCa4RGZISjdSKHhmMwAGDZagDglZ6W8AQBKtpyRdrXZJf_z9R33pFNvS6AlTDbbmsah0DTQYRys96mm90B7mz0tUx9yoNv0UXc5lHNyEu2mhIt_zsnr6v6lfWzWzw9P7d26cUyp2mgWtFKOd0srHPPoFHb2FpWzHYua28gURK87gYzxEEFJlMKDjg5QyWD5nFwdumOpyRSXanC9G4chuGokKCY5_5OuD5LLYyk5RDPltLX50yCY_SGD5nCI_wLvqlkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><source>American Institute of Physics (AIP) Publications</source><creator>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</creator><creatorcontrib>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</creatorcontrib><description>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.468921</identifier><language>eng</language><publisher>United States</publisher><subject>360602 - Other Materials- Structure & Phase Studies ; AGGLOMERATION ; BINARY MIXTURES ; CALCULATION METHODS ; CHEMICAL COMPOSITION ; COLLISIONS ; DENSITY ; DISPERSIONS ; DISTRIBUTION FUNCTIONS ; EQUATIONS ; EQUATIONS OF STATE ; FLUCTUATIONS ; FLUIDS ; FUNCTIONS ; HARD-SPHERE MODEL ; INTEGRAL EQUATIONS ; MATERIALS SCIENCE ; MIXTURES ; MOLECULE COLLISIONS ; MONTE CARLO METHOD ; PERCUS-YEVICK EQUATION ; PHASE STUDIES ; PHYSICAL PROPERTIES ; SAMPLING ; SHAPE ; SIZE ; VAN DER WAALS FORCES ; VARIATIONS</subject><ispartof>The Journal of chemical physics, 1995-01, Vol.102 (3), p.1349-1360</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</citedby><cites>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7082733$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Jinkyung</creatorcontrib><creatorcontrib>Jhon, Mu Shik</creatorcontrib><creatorcontrib>Ree, Francis H.</creatorcontrib><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><title>The Journal of chemical physics</title><description>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</description><subject>360602 - Other Materials- Structure & Phase Studies</subject><subject>AGGLOMERATION</subject><subject>BINARY MIXTURES</subject><subject>CALCULATION METHODS</subject><subject>CHEMICAL COMPOSITION</subject><subject>COLLISIONS</subject><subject>DENSITY</subject><subject>DISPERSIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>FLUCTUATIONS</subject><subject>FLUIDS</subject><subject>FUNCTIONS</subject><subject>HARD-SPHERE MODEL</subject><subject>INTEGRAL EQUATIONS</subject><subject>MATERIALS SCIENCE</subject><subject>MIXTURES</subject><subject>MOLECULE COLLISIONS</subject><subject>MONTE CARLO METHOD</subject><subject>PERCUS-YEVICK EQUATION</subject><subject>PHASE STUDIES</subject><subject>PHYSICAL PROPERTIES</subject><subject>SAMPLING</subject><subject>SHAPE</subject><subject>SIZE</subject><subject>VAN DER WAALS FORCES</subject><subject>VARIATIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUQIMoWKvgJwRXbqbem9Q8ljJYFQpudB0yeTCRdmZIUtGd_-Af-iVa6upsDmdxCLlEWCAIfoOLpVCa4RGZISjdSKHhmMwAGDZagDglZ6W8AQBKtpyRdrXZJf_z9R33pFNvS6AlTDbbmsah0DTQYRys96mm90B7mz0tUx9yoNv0UXc5lHNyEu2mhIt_zsnr6v6lfWzWzw9P7d26cUyp2mgWtFKOd0srHPPoFHb2FpWzHYua28gURK87gYzxEEFJlMKDjg5QyWD5nFwdumOpyRSXanC9G4chuGokKCY5_5OuD5LLYyk5RDPltLX50yCY_SGD5nCI_wLvqlkQ</recordid><startdate>19950115</startdate><enddate>19950115</enddate><creator>Jung, Jinkyung</creator><creator>Jhon, Mu Shik</creator><creator>Ree, Francis H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19950115</creationdate><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><author>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>360602 - Other Materials- Structure & Phase Studies</topic><topic>AGGLOMERATION</topic><topic>BINARY MIXTURES</topic><topic>CALCULATION METHODS</topic><topic>CHEMICAL COMPOSITION</topic><topic>COLLISIONS</topic><topic>DENSITY</topic><topic>DISPERSIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>FLUCTUATIONS</topic><topic>FLUIDS</topic><topic>FUNCTIONS</topic><topic>HARD-SPHERE MODEL</topic><topic>INTEGRAL EQUATIONS</topic><topic>MATERIALS SCIENCE</topic><topic>MIXTURES</topic><topic>MOLECULE COLLISIONS</topic><topic>MONTE CARLO METHOD</topic><topic>PERCUS-YEVICK EQUATION</topic><topic>PHASE STUDIES</topic><topic>PHYSICAL PROPERTIES</topic><topic>SAMPLING</topic><topic>SHAPE</topic><topic>SIZE</topic><topic>VAN DER WAALS FORCES</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jinkyung</creatorcontrib><creatorcontrib>Jhon, Mu Shik</creatorcontrib><creatorcontrib>Ree, Francis H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jinkyung</au><au>Jhon, Mu Shik</au><au>Ree, Francis H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid–fluid phase separations in nonadditive hard sphere mixtures</atitle><jtitle>The Journal of chemical physics</jtitle><date>1995-01-15</date><risdate>1995</risdate><volume>102</volume><issue>3</issue><spage>1349</spage><epage>1360</epage><pages>1349-1360</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</abstract><cop>United States</cop><doi>10.1063/1.468921</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 1995-01, Vol.102 (3), p.1349-1360 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_7082733 |
source | American Institute of Physics (AIP) Publications |
subjects | 360602 - Other Materials- Structure & Phase Studies AGGLOMERATION BINARY MIXTURES CALCULATION METHODS CHEMICAL COMPOSITION COLLISIONS DENSITY DISPERSIONS DISTRIBUTION FUNCTIONS EQUATIONS EQUATIONS OF STATE FLUCTUATIONS FLUIDS FUNCTIONS HARD-SPHERE MODEL INTEGRAL EQUATIONS MATERIALS SCIENCE MIXTURES MOLECULE COLLISIONS MONTE CARLO METHOD PERCUS-YEVICK EQUATION PHASE STUDIES PHYSICAL PROPERTIES SAMPLING SHAPE SIZE VAN DER WAALS FORCES VARIATIONS |
title | Fluid–fluid phase separations in nonadditive hard sphere mixtures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%E2%80%93fluid%20phase%20separations%20in%20nonadditive%20hard%20sphere%20mixtures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jung,%20Jinkyung&rft.date=1995-01-15&rft.volume=102&rft.issue=3&rft.spage=1349&rft.epage=1360&rft.pages=1349-1360&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.468921&rft_dat=%3Ccrossref_osti_%3E10_1063_1_468921%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |