Loading…

Fluid–fluid phase separations in nonadditive hard sphere mixtures

We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem....

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1995-01, Vol.102 (3), p.1349-1360
Main Authors: Jung, Jinkyung, Jhon, Mu Shik, Ree, Francis H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3
cites cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3
container_end_page 1360
container_issue 3
container_start_page 1349
container_title The Journal of chemical physics
container_volume 102
creator Jung, Jinkyung
Jhon, Mu Shik
Ree, Francis H.
description We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.
doi_str_mv 10.1063/1.468921
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7082733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_468921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</originalsourceid><addsrcrecordid>eNotkMtKAzEUQIMoWKvgJwRXbqbem9Q8ljJYFQpudB0yeTCRdmZIUtGd_-Af-iVa6upsDmdxCLlEWCAIfoOLpVCa4RGZISjdSKHhmMwAGDZagDglZ6W8AQBKtpyRdrXZJf_z9R33pFNvS6AlTDbbmsah0DTQYRys96mm90B7mz0tUx9yoNv0UXc5lHNyEu2mhIt_zsnr6v6lfWzWzw9P7d26cUyp2mgWtFKOd0srHPPoFHb2FpWzHYua28gURK87gYzxEEFJlMKDjg5QyWD5nFwdumOpyRSXanC9G4chuGokKCY5_5OuD5LLYyk5RDPltLX50yCY_SGD5nCI_wLvqlkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><source>American Institute of Physics (AIP) Publications</source><creator>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</creator><creatorcontrib>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</creatorcontrib><description>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.468921</identifier><language>eng</language><publisher>United States</publisher><subject>360602 - Other Materials- Structure &amp; Phase Studies ; AGGLOMERATION ; BINARY MIXTURES ; CALCULATION METHODS ; CHEMICAL COMPOSITION ; COLLISIONS ; DENSITY ; DISPERSIONS ; DISTRIBUTION FUNCTIONS ; EQUATIONS ; EQUATIONS OF STATE ; FLUCTUATIONS ; FLUIDS ; FUNCTIONS ; HARD-SPHERE MODEL ; INTEGRAL EQUATIONS ; MATERIALS SCIENCE ; MIXTURES ; MOLECULE COLLISIONS ; MONTE CARLO METHOD ; PERCUS-YEVICK EQUATION ; PHASE STUDIES ; PHYSICAL PROPERTIES ; SAMPLING ; SHAPE ; SIZE ; VAN DER WAALS FORCES ; VARIATIONS</subject><ispartof>The Journal of chemical physics, 1995-01, Vol.102 (3), p.1349-1360</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</citedby><cites>FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7082733$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Jinkyung</creatorcontrib><creatorcontrib>Jhon, Mu Shik</creatorcontrib><creatorcontrib>Ree, Francis H.</creatorcontrib><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><title>The Journal of chemical physics</title><description>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</description><subject>360602 - Other Materials- Structure &amp; Phase Studies</subject><subject>AGGLOMERATION</subject><subject>BINARY MIXTURES</subject><subject>CALCULATION METHODS</subject><subject>CHEMICAL COMPOSITION</subject><subject>COLLISIONS</subject><subject>DENSITY</subject><subject>DISPERSIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>FLUCTUATIONS</subject><subject>FLUIDS</subject><subject>FUNCTIONS</subject><subject>HARD-SPHERE MODEL</subject><subject>INTEGRAL EQUATIONS</subject><subject>MATERIALS SCIENCE</subject><subject>MIXTURES</subject><subject>MOLECULE COLLISIONS</subject><subject>MONTE CARLO METHOD</subject><subject>PERCUS-YEVICK EQUATION</subject><subject>PHASE STUDIES</subject><subject>PHYSICAL PROPERTIES</subject><subject>SAMPLING</subject><subject>SHAPE</subject><subject>SIZE</subject><subject>VAN DER WAALS FORCES</subject><subject>VARIATIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUQIMoWKvgJwRXbqbem9Q8ljJYFQpudB0yeTCRdmZIUtGd_-Af-iVa6upsDmdxCLlEWCAIfoOLpVCa4RGZISjdSKHhmMwAGDZagDglZ6W8AQBKtpyRdrXZJf_z9R33pFNvS6AlTDbbmsah0DTQYRys96mm90B7mz0tUx9yoNv0UXc5lHNyEu2mhIt_zsnr6v6lfWzWzw9P7d26cUyp2mgWtFKOd0srHPPoFHb2FpWzHYua28gURK87gYzxEEFJlMKDjg5QyWD5nFwdumOpyRSXanC9G4chuGokKCY5_5OuD5LLYyk5RDPltLX50yCY_SGD5nCI_wLvqlkQ</recordid><startdate>19950115</startdate><enddate>19950115</enddate><creator>Jung, Jinkyung</creator><creator>Jhon, Mu Shik</creator><creator>Ree, Francis H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19950115</creationdate><title>Fluid–fluid phase separations in nonadditive hard sphere mixtures</title><author>Jung, Jinkyung ; Jhon, Mu Shik ; Ree, Francis H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>360602 - Other Materials- Structure &amp; Phase Studies</topic><topic>AGGLOMERATION</topic><topic>BINARY MIXTURES</topic><topic>CALCULATION METHODS</topic><topic>CHEMICAL COMPOSITION</topic><topic>COLLISIONS</topic><topic>DENSITY</topic><topic>DISPERSIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>FLUCTUATIONS</topic><topic>FLUIDS</topic><topic>FUNCTIONS</topic><topic>HARD-SPHERE MODEL</topic><topic>INTEGRAL EQUATIONS</topic><topic>MATERIALS SCIENCE</topic><topic>MIXTURES</topic><topic>MOLECULE COLLISIONS</topic><topic>MONTE CARLO METHOD</topic><topic>PERCUS-YEVICK EQUATION</topic><topic>PHASE STUDIES</topic><topic>PHYSICAL PROPERTIES</topic><topic>SAMPLING</topic><topic>SHAPE</topic><topic>SIZE</topic><topic>VAN DER WAALS FORCES</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jinkyung</creatorcontrib><creatorcontrib>Jhon, Mu Shik</creatorcontrib><creatorcontrib>Ree, Francis H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jinkyung</au><au>Jhon, Mu Shik</au><au>Ree, Francis H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid–fluid phase separations in nonadditive hard sphere mixtures</atitle><jtitle>The Journal of chemical physics</jtitle><date>1995-01-15</date><risdate>1995</risdate><volume>102</volume><issue>3</issue><spage>1349</spage><epage>1360</epage><pages>1349-1360</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We investigated the phase stability of a system of nonadditive hard sphere (NAHS) mixtures with equal diameters, d, between like species and an unequal collision diameter, d(1+α), between unlike species. It is based on an analytic equation of state (EOS) which refines an earlier expression [J. Chem. Phys. 100, 9064 (1994)] within the mixed fluid phase range. The new EOS gives a reliable representation of Monte Carlo EOS data over a wide range of density, composition, and nonadditivity parameters (α). Comparisons with available computer simulations show that the new EOS predicts satisfactory phase boundaries and the critical density line. It is superior to results derived from integral equations (the Percus–Yevick, the Martynov–Sarkisov, and the modified Martynov–Sarkisov) and analytic theories (the MIX1 model, the van der Waals one-fluid model, and the scaled particle theory). The present study shows that, unless α exceeds 0.026, the fluid phase will remain fully miscible up to the freezing point of pure hard spheres. We have also investigated structural aspects of the phase stability by Monte Carlo computations. The radial distribution functions, the local mole fraction, and coordination numbers for like and unlike pairs of hard spheres exhibit significant number dependencies close to the fluid phase boundary. They provide precursory signals to an impending phase change. Finite systems used in the Monte Carlo sampling limit fluctuations in sizes and shapes of heterogeneous clusters. The observed number dependence simply reflects this fact.</abstract><cop>United States</cop><doi>10.1063/1.468921</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1995-01, Vol.102 (3), p.1349-1360
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_7082733
source American Institute of Physics (AIP) Publications
subjects 360602 - Other Materials- Structure & Phase Studies
AGGLOMERATION
BINARY MIXTURES
CALCULATION METHODS
CHEMICAL COMPOSITION
COLLISIONS
DENSITY
DISPERSIONS
DISTRIBUTION FUNCTIONS
EQUATIONS
EQUATIONS OF STATE
FLUCTUATIONS
FLUIDS
FUNCTIONS
HARD-SPHERE MODEL
INTEGRAL EQUATIONS
MATERIALS SCIENCE
MIXTURES
MOLECULE COLLISIONS
MONTE CARLO METHOD
PERCUS-YEVICK EQUATION
PHASE STUDIES
PHYSICAL PROPERTIES
SAMPLING
SHAPE
SIZE
VAN DER WAALS FORCES
VARIATIONS
title Fluid–fluid phase separations in nonadditive hard sphere mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%E2%80%93fluid%20phase%20separations%20in%20nonadditive%20hard%20sphere%20mixtures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jung,%20Jinkyung&rft.date=1995-01-15&rft.volume=102&rft.issue=3&rft.spage=1349&rft.epage=1360&rft.pages=1349-1360&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.468921&rft_dat=%3Ccrossref_osti_%3E10_1063_1_468921%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-92e988c3b4a6c2d1c81ba518cab2f93af280fd9b61223ef087176d09fc0187ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true