Loading…
Self-dual Maxwell field on a null surface. II
The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in pre...
Saved in:
Published in: | Foundations of physics 1994-04, Vol.24 (4), p.467-476 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473 |
container_end_page | 476 |
container_issue | 4 |
container_start_page | 467 |
container_title | Foundations of physics |
container_volume | 24 |
creator | GOLDBERG, J. N |
description | The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs. |
doi_str_mv | 10.1007/BF02058058 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7158162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4115314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhBdRsFYv_oIgnoSt75v9PmppNVDxoJ7DZj8wsiYlm6L-eyMVhYFh4Jk5DCHnCAsEUNe3ayhB6EkHZIZCldQIlIdkBoCCGkB9TE5yfgMAoySfEfoUUqR-Z1PxYD8_QkpFbEPyRd8Vtuh2U867IVoXFkVVnZKjaFMOZ78-Jy_r1fPynm4e76rlzYY6lDhSjT4I01hvPStZU0ZtARVKyQxoDtoo7l3DhI2ukeC5Ud77JkBEr5jhis3JxX63z2NbZ9eOwb26vuuCG2uFQqMsJ-hqD7mhz3kIsd4O7bsdvmqE-ueN-v-NCb7cw1ubnU1xsJ1r81-DIwqGnH0DKNNbYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-dual Maxwell field on a null surface. II</title><source>Springer LINK Archives</source><creator>GOLDBERG, J. N</creator><creatorcontrib>GOLDBERG, J. N</creatorcontrib><description>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/BF02058058</identifier><identifier>CODEN: FNDPA4</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>CANONICAL TRANSFORMATIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD THEORIES ; Field theory ; GAUGE INVARIANCE ; GENERAL RELATIVITY THEORY ; General theory of fields and particles ; HAMILTON-JACOBI EQUATIONS ; INVARIANCE PRINCIPLES ; Lagrangian and hamiltonian approach ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; QUANTIZATION ; Quantum electrodynamics ; QUANTUM FIELD THEORY ; QUANTUM GRAVITY ; Specific calculations ; Specific theories and interaction models; particle systematics ; The physics of elementary particles and fields ; TRANSFORMATIONS 661310 -- Relativity & Gravitation-- (1992-)</subject><ispartof>Foundations of physics, 1994-04, Vol.24 (4), p.467-476</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4115314$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7158162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDBERG, J. N</creatorcontrib><title>Self-dual Maxwell field on a null surface. II</title><title>Foundations of physics</title><description>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</description><subject>CANONICAL TRANSFORMATIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>Field theory</subject><subject>GAUGE INVARIANCE</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>General theory of fields and particles</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Lagrangian and hamiltonian approach</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>QUANTIZATION</subject><subject>Quantum electrodynamics</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM GRAVITY</subject><subject>Specific calculations</subject><subject>Specific theories and interaction models; particle systematics</subject><subject>The physics of elementary particles and fields</subject><subject>TRANSFORMATIONS 661310 -- Relativity & Gravitation-- (1992-)</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AYhBdRsFYv_oIgnoSt75v9PmppNVDxoJ7DZj8wsiYlm6L-eyMVhYFh4Jk5DCHnCAsEUNe3ayhB6EkHZIZCldQIlIdkBoCCGkB9TE5yfgMAoySfEfoUUqR-Z1PxYD8_QkpFbEPyRd8Vtuh2U867IVoXFkVVnZKjaFMOZ78-Jy_r1fPynm4e76rlzYY6lDhSjT4I01hvPStZU0ZtARVKyQxoDtoo7l3DhI2ukeC5Ud77JkBEr5jhis3JxX63z2NbZ9eOwb26vuuCG2uFQqMsJ-hqD7mhz3kIsd4O7bsdvmqE-ueN-v-NCb7cw1ubnU1xsJ1r81-DIwqGnH0DKNNbYg</recordid><startdate>199404</startdate><enddate>199404</enddate><creator>GOLDBERG, J. N</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199404</creationdate><title>Self-dual Maxwell field on a null surface. II</title><author>GOLDBERG, J. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>CANONICAL TRANSFORMATIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>Field theory</topic><topic>GAUGE INVARIANCE</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>General theory of fields and particles</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Lagrangian and hamiltonian approach</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>QUANTIZATION</topic><topic>Quantum electrodynamics</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM GRAVITY</topic><topic>Specific calculations</topic><topic>Specific theories and interaction models; particle systematics</topic><topic>The physics of elementary particles and fields</topic><topic>TRANSFORMATIONS 661310 -- Relativity & Gravitation-- (1992-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDBERG, J. N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDBERG, J. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-dual Maxwell field on a null surface. II</atitle><jtitle>Foundations of physics</jtitle><date>1994-04</date><risdate>1994</risdate><volume>24</volume><issue>4</issue><spage>467</spage><epage>476</epage><pages>467-476</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><coden>FNDPA4</coden><abstract>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF02058058</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 1994-04, Vol.24 (4), p.467-476 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_osti_scitechconnect_7158162 |
source | Springer LINK Archives |
subjects | CANONICAL TRANSFORMATIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical and quantum physics: mechanics and fields Classical electromagnetism, maxwell equations Classical field theories DIFFERENTIAL EQUATIONS EQUATIONS Exact sciences and technology FIELD THEORIES Field theory GAUGE INVARIANCE GENERAL RELATIVITY THEORY General theory of fields and particles HAMILTON-JACOBI EQUATIONS INVARIANCE PRINCIPLES Lagrangian and hamiltonian approach PARTIAL DIFFERENTIAL EQUATIONS Physics QUANTIZATION Quantum electrodynamics QUANTUM FIELD THEORY QUANTUM GRAVITY Specific calculations Specific theories and interaction models particle systematics The physics of elementary particles and fields TRANSFORMATIONS 661310 -- Relativity & Gravitation-- (1992-) |
title | Self-dual Maxwell field on a null surface. II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-dual%20Maxwell%20field%20on%20a%20null%20surface.%20II&rft.jtitle=Foundations%20of%20physics&rft.au=GOLDBERG,%20J.%20N&rft.date=1994-04&rft.volume=24&rft.issue=4&rft.spage=467&rft.epage=476&rft.pages=467-476&rft.issn=0015-9018&rft.eissn=1572-9516&rft.coden=FNDPA4&rft_id=info:doi/10.1007/BF02058058&rft_dat=%3Cpascalfrancis_osti_%3E4115314%3C/pascalfrancis_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |