Loading…

Self-dual Maxwell field on a null surface. II

The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in pre...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of physics 1994-04, Vol.24 (4), p.467-476
Main Author: GOLDBERG, J. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473
container_end_page 476
container_issue 4
container_start_page 467
container_title Foundations of physics
container_volume 24
creator GOLDBERG, J. N
description The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.
doi_str_mv 10.1007/BF02058058
format article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7158162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4115314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhBdRsFYv_oIgnoSt75v9PmppNVDxoJ7DZj8wsiYlm6L-eyMVhYFh4Jk5DCHnCAsEUNe3ayhB6EkHZIZCldQIlIdkBoCCGkB9TE5yfgMAoySfEfoUUqR-Z1PxYD8_QkpFbEPyRd8Vtuh2U867IVoXFkVVnZKjaFMOZ78-Jy_r1fPynm4e76rlzYY6lDhSjT4I01hvPStZU0ZtARVKyQxoDtoo7l3DhI2ukeC5Ud77JkBEr5jhis3JxX63z2NbZ9eOwb26vuuCG2uFQqMsJ-hqD7mhz3kIsd4O7bsdvmqE-ueN-v-NCb7cw1ubnU1xsJ1r81-DIwqGnH0DKNNbYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-dual Maxwell field on a null surface. II</title><source>Springer LINK Archives</source><creator>GOLDBERG, J. N</creator><creatorcontrib>GOLDBERG, J. N</creatorcontrib><description>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/BF02058058</identifier><identifier>CODEN: FNDPA4</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>CANONICAL TRANSFORMATIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD THEORIES ; Field theory ; GAUGE INVARIANCE ; GENERAL RELATIVITY THEORY ; General theory of fields and particles ; HAMILTON-JACOBI EQUATIONS ; INVARIANCE PRINCIPLES ; Lagrangian and hamiltonian approach ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; QUANTIZATION ; Quantum electrodynamics ; QUANTUM FIELD THEORY ; QUANTUM GRAVITY ; Specific calculations ; Specific theories and interaction models; particle systematics ; The physics of elementary particles and fields ; TRANSFORMATIONS 661310 -- Relativity &amp; Gravitation-- (1992-)</subject><ispartof>Foundations of physics, 1994-04, Vol.24 (4), p.467-476</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4115314$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7158162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDBERG, J. N</creatorcontrib><title>Self-dual Maxwell field on a null surface. II</title><title>Foundations of physics</title><description>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</description><subject>CANONICAL TRANSFORMATIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>Field theory</subject><subject>GAUGE INVARIANCE</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>General theory of fields and particles</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Lagrangian and hamiltonian approach</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>QUANTIZATION</subject><subject>Quantum electrodynamics</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM GRAVITY</subject><subject>Specific calculations</subject><subject>Specific theories and interaction models; particle systematics</subject><subject>The physics of elementary particles and fields</subject><subject>TRANSFORMATIONS 661310 -- Relativity &amp; Gravitation-- (1992-)</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AYhBdRsFYv_oIgnoSt75v9PmppNVDxoJ7DZj8wsiYlm6L-eyMVhYFh4Jk5DCHnCAsEUNe3ayhB6EkHZIZCldQIlIdkBoCCGkB9TE5yfgMAoySfEfoUUqR-Z1PxYD8_QkpFbEPyRd8Vtuh2U867IVoXFkVVnZKjaFMOZ78-Jy_r1fPynm4e76rlzYY6lDhSjT4I01hvPStZU0ZtARVKyQxoDtoo7l3DhI2ukeC5Ud77JkBEr5jhis3JxX63z2NbZ9eOwb26vuuCG2uFQqMsJ-hqD7mhz3kIsd4O7bsdvmqE-ueN-v-NCb7cw1ubnU1xsJ1r81-DIwqGnH0DKNNbYg</recordid><startdate>199404</startdate><enddate>199404</enddate><creator>GOLDBERG, J. N</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199404</creationdate><title>Self-dual Maxwell field on a null surface. II</title><author>GOLDBERG, J. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>CANONICAL TRANSFORMATIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>Field theory</topic><topic>GAUGE INVARIANCE</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>General theory of fields and particles</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Lagrangian and hamiltonian approach</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>QUANTIZATION</topic><topic>Quantum electrodynamics</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM GRAVITY</topic><topic>Specific calculations</topic><topic>Specific theories and interaction models; particle systematics</topic><topic>The physics of elementary particles and fields</topic><topic>TRANSFORMATIONS 661310 -- Relativity &amp; Gravitation-- (1992-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDBERG, J. N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDBERG, J. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-dual Maxwell field on a null surface. II</atitle><jtitle>Foundations of physics</jtitle><date>1994-04</date><risdate>1994</risdate><volume>24</volume><issue>4</issue><spage>467</spage><epage>476</epage><pages>467-476</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><coden>FNDPA4</coden><abstract>The canonical formalism for the Maxwell field on a null surface has been revisited. A new pair of gauge-independent canonical variables is introduced. It is shown that these variables are derivable from a Hamilton-Jacobi functional. The construction of the appropriate C algebra is carried out in preparation for quantization. The resulting quantum theory is similar to a previous result. It is then shown that one can construct the T-variables of Rovelli and Smolin on the null surface. The Poisson bracket algebra exhibits causal relations along the null rays, but is nonsingular if the loops are restricted to those whose projections along the null rays are not tangent and one-to-one. Finally, there is a brief discussion of the relevance of this work to general relativity. 18 refs.</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF02058058</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 1994-04, Vol.24 (4), p.467-476
issn 0015-9018
1572-9516
language eng
recordid cdi_osti_scitechconnect_7158162
source Springer LINK Archives
subjects CANONICAL TRANSFORMATIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
Classical electromagnetism, maxwell equations
Classical field theories
DIFFERENTIAL EQUATIONS
EQUATIONS
Exact sciences and technology
FIELD THEORIES
Field theory
GAUGE INVARIANCE
GENERAL RELATIVITY THEORY
General theory of fields and particles
HAMILTON-JACOBI EQUATIONS
INVARIANCE PRINCIPLES
Lagrangian and hamiltonian approach
PARTIAL DIFFERENTIAL EQUATIONS
Physics
QUANTIZATION
Quantum electrodynamics
QUANTUM FIELD THEORY
QUANTUM GRAVITY
Specific calculations
Specific theories and interaction models
particle systematics
The physics of elementary particles and fields
TRANSFORMATIONS 661310 -- Relativity & Gravitation-- (1992-)
title Self-dual Maxwell field on a null surface. II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-dual%20Maxwell%20field%20on%20a%20null%20surface.%20II&rft.jtitle=Foundations%20of%20physics&rft.au=GOLDBERG,%20J.%20N&rft.date=1994-04&rft.volume=24&rft.issue=4&rft.spage=467&rft.epage=476&rft.pages=467-476&rft.issn=0015-9018&rft.eissn=1572-9516&rft.coden=FNDPA4&rft_id=info:doi/10.1007/BF02058058&rft_dat=%3Cpascalfrancis_osti_%3E4115314%3C/pascalfrancis_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c161t-81de59badad323b2f8a0171663908408974dcb35afcb60d497dddbe0f1d739473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true