Loading…

Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings

Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental chara...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials engineering and performance 1994-02, Vol.3 (1), p.55-60
Main Authors: SOHN, Y. H, BIEDERMAN, R. R, SISSON, R. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03
cites cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03
container_end_page 60
container_issue 1
container_start_page 55
container_title Journal of materials engineering and performance
container_volume 3
creator SOHN, Y. H
BIEDERMAN, R. R
SISSON, R. D
description Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.
doi_str_mv 10.1007/BF02654499
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7166429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22542289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsXf0EQT8JqPrfN0RarhYIXPYfZbLZN2W7WJBXbX2-kVU8zDM88vLwIXVNyTwkZPUxmhJVSCKVO0IDmpaCEidO8E6kKJZQ8RxcxrkmGGRMDtJxHn1Y2bKDF_svVkJzvsG9wv9pFZ_L1E3ofcG17H12yNe4hJAdtu8MxQeVat8_HvQvGdw7wr2sCITgbsPHZ2C3jJTproI326jiH6H329DZ9KRavz_Pp46IwnLJUjHglS8JJpeq6EVxQbqDkYABUbWUjGmBjaRSoMSVUUaigllyVSjClWAWED9HNwetjcjqaHNmscrTOmqRHtCwz-Q_1wX9sbUx67behy7k0Y4xnoxQZujtAJvgYg210H9wGwk5Ton_K1v9lZ_j2aISYS2sCdMbFvw9B2XgsCP8GHbB-_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222353954</pqid></control><display><type>article</type><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><source>Springer Online Journals Archive Complete</source><creator>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</creator><creatorcontrib>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</creatorcontrib><description>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/BF02654499</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies ; 360205 - Ceramics, Cermets, &amp; Refractories- Corrosion &amp; Erosion ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; CHALCOGENIDES ; CHEMICAL REACTIONS ; COATINGS ; CORROSION PRODUCTS ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL-PHASE TRANSFORMATIONS ; DATA ; Exact sciences and technology ; EXPERIMENTAL DATA ; FAILURES ; HEAT TREATMENTS ; INFORMATION ; MATERIALS SCIENCE ; MICROSTRUCTURE ; NUMERICAL DATA ; OXIDATION ; OXIDES ; OXYGEN COMPOUNDS ; PHASE TRANSFORMATIONS ; Physics ; Surface treatments ; TITANIUM COMPOUNDS ; TITANIUM OXIDES ; TRANSITION ELEMENT COMPOUNDS ; VAPOR DEPOSITED COATINGS ; YTTRIUM COMPOUNDS ; YTTRIUM OXIDES ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.55-60</ispartof><rights>1994 INIST-CNRS</rights><rights>Copyright ASM International Feb 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</citedby><cites>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,777,781,786,787,882,23911,23912,25121,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4128840$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7166429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SOHN, Y. H</creatorcontrib><creatorcontrib>BIEDERMAN, R. R</creatorcontrib><creatorcontrib>SISSON, R. D</creatorcontrib><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><title>Journal of materials engineering and performance</title><description>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</description><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</subject><subject>360205 - Ceramics, Cermets, &amp; Refractories- Corrosion &amp; Erosion</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>COATINGS</subject><subject>CORROSION PRODUCTS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL-PHASE TRANSFORMATIONS</subject><subject>DATA</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FAILURES</subject><subject>HEAT TREATMENTS</subject><subject>INFORMATION</subject><subject>MATERIALS SCIENCE</subject><subject>MICROSTRUCTURE</subject><subject>NUMERICAL DATA</subject><subject>OXIDATION</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Surface treatments</subject><subject>TITANIUM COMPOUNDS</subject><subject>TITANIUM OXIDES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VAPOR DEPOSITED COATINGS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>YTTRIUM OXIDES</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsXf0EQT8JqPrfN0RarhYIXPYfZbLZN2W7WJBXbX2-kVU8zDM88vLwIXVNyTwkZPUxmhJVSCKVO0IDmpaCEidO8E6kKJZQ8RxcxrkmGGRMDtJxHn1Y2bKDF_svVkJzvsG9wv9pFZ_L1E3ofcG17H12yNe4hJAdtu8MxQeVat8_HvQvGdw7wr2sCITgbsPHZ2C3jJTproI326jiH6H329DZ9KRavz_Pp46IwnLJUjHglS8JJpeq6EVxQbqDkYABUbWUjGmBjaRSoMSVUUaigllyVSjClWAWED9HNwetjcjqaHNmscrTOmqRHtCwz-Q_1wX9sbUx67behy7k0Y4xnoxQZujtAJvgYg210H9wGwk5Ton_K1v9lZ_j2aISYS2sCdMbFvw9B2XgsCP8GHbB-_w</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>SOHN, Y. H</creator><creator>BIEDERMAN, R. R</creator><creator>SISSON, R. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>19940201</creationdate><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><author>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</topic><topic>360205 - Ceramics, Cermets, &amp; Refractories- Corrosion &amp; Erosion</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>COATINGS</topic><topic>CORROSION PRODUCTS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL-PHASE TRANSFORMATIONS</topic><topic>DATA</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FAILURES</topic><topic>HEAT TREATMENTS</topic><topic>INFORMATION</topic><topic>MATERIALS SCIENCE</topic><topic>MICROSTRUCTURE</topic><topic>NUMERICAL DATA</topic><topic>OXIDATION</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Surface treatments</topic><topic>TITANIUM COMPOUNDS</topic><topic>TITANIUM OXIDES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VAPOR DEPOSITED COATINGS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>YTTRIUM OXIDES</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SOHN, Y. H</creatorcontrib><creatorcontrib>BIEDERMAN, R. R</creatorcontrib><creatorcontrib>SISSON, R. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SOHN, Y. H</au><au>BIEDERMAN, R. R</au><au>SISSON, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>1994-02-01</date><risdate>1994</risdate><volume>3</volume><issue>1</issue><spage>55</spage><epage>60</epage><pages>55-60</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF02654499</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.55-60
issn 1059-9495
1544-1024
language eng
recordid cdi_osti_scitechconnect_7166429
source Springer Online Journals Archive Complete
subjects 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies
360205 - Ceramics, Cermets, & Refractories- Corrosion & Erosion
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
CHALCOGENIDES
CHEMICAL REACTIONS
COATINGS
CORROSION PRODUCTS
Cross-disciplinary physics: materials science
rheology
CRYSTAL-PHASE TRANSFORMATIONS
DATA
Exact sciences and technology
EXPERIMENTAL DATA
FAILURES
HEAT TREATMENTS
INFORMATION
MATERIALS SCIENCE
MICROSTRUCTURE
NUMERICAL DATA
OXIDATION
OXIDES
OXYGEN COMPOUNDS
PHASE TRANSFORMATIONS
Physics
Surface treatments
TITANIUM COMPOUNDS
TITANIUM OXIDES
TRANSITION ELEMENT COMPOUNDS
VAPOR DEPOSITED COATINGS
YTTRIUM COMPOUNDS
YTTRIUM OXIDES
ZIRCONIUM COMPOUNDS
ZIRCONIUM OXIDES
title Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isothermal%20oxidation%20of%20physical%20vapor%20deposited%20partially%20stabilized%20zirconia%20thermal%20Barrier%20coatings&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=SOHN,%20Y.%20H&rft.date=1994-02-01&rft.volume=3&rft.issue=1&rft.spage=55&rft.epage=60&rft.pages=55-60&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/BF02654499&rft_dat=%3Cproquest_osti_%3E22542289%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222353954&rft_id=info:pmid/&rfr_iscdi=true