Loading…
Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings
Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental chara...
Saved in:
Published in: | Journal of materials engineering and performance 1994-02, Vol.3 (1), p.55-60 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03 |
container_end_page | 60 |
container_issue | 1 |
container_start_page | 55 |
container_title | Journal of materials engineering and performance |
container_volume | 3 |
creator | SOHN, Y. H BIEDERMAN, R. R SISSON, R. D |
description | Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating. |
doi_str_mv | 10.1007/BF02654499 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7166429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22542289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsXf0EQT8JqPrfN0RarhYIXPYfZbLZN2W7WJBXbX2-kVU8zDM88vLwIXVNyTwkZPUxmhJVSCKVO0IDmpaCEidO8E6kKJZQ8RxcxrkmGGRMDtJxHn1Y2bKDF_svVkJzvsG9wv9pFZ_L1E3ofcG17H12yNe4hJAdtu8MxQeVat8_HvQvGdw7wr2sCITgbsPHZ2C3jJTproI326jiH6H329DZ9KRavz_Pp46IwnLJUjHglS8JJpeq6EVxQbqDkYABUbWUjGmBjaRSoMSVUUaigllyVSjClWAWED9HNwetjcjqaHNmscrTOmqRHtCwz-Q_1wX9sbUx67behy7k0Y4xnoxQZujtAJvgYg210H9wGwk5Ton_K1v9lZ_j2aISYS2sCdMbFvw9B2XgsCP8GHbB-_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222353954</pqid></control><display><type>article</type><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><source>Springer Online Journals Archive Complete</source><creator>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</creator><creatorcontrib>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</creatorcontrib><description>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/BF02654499</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies ; 360205 - Ceramics, Cermets, & Refractories- Corrosion & Erosion ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; CHALCOGENIDES ; CHEMICAL REACTIONS ; COATINGS ; CORROSION PRODUCTS ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL-PHASE TRANSFORMATIONS ; DATA ; Exact sciences and technology ; EXPERIMENTAL DATA ; FAILURES ; HEAT TREATMENTS ; INFORMATION ; MATERIALS SCIENCE ; MICROSTRUCTURE ; NUMERICAL DATA ; OXIDATION ; OXIDES ; OXYGEN COMPOUNDS ; PHASE TRANSFORMATIONS ; Physics ; Surface treatments ; TITANIUM COMPOUNDS ; TITANIUM OXIDES ; TRANSITION ELEMENT COMPOUNDS ; VAPOR DEPOSITED COATINGS ; YTTRIUM COMPOUNDS ; YTTRIUM OXIDES ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.55-60</ispartof><rights>1994 INIST-CNRS</rights><rights>Copyright ASM International Feb 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</citedby><cites>FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,777,781,786,787,882,23911,23912,25121,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4128840$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7166429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SOHN, Y. H</creatorcontrib><creatorcontrib>BIEDERMAN, R. R</creatorcontrib><creatorcontrib>SISSON, R. D</creatorcontrib><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><title>Journal of materials engineering and performance</title><description>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</description><subject>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</subject><subject>360205 - Ceramics, Cermets, & Refractories- Corrosion & Erosion</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>COATINGS</subject><subject>CORROSION PRODUCTS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL-PHASE TRANSFORMATIONS</subject><subject>DATA</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FAILURES</subject><subject>HEAT TREATMENTS</subject><subject>INFORMATION</subject><subject>MATERIALS SCIENCE</subject><subject>MICROSTRUCTURE</subject><subject>NUMERICAL DATA</subject><subject>OXIDATION</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Surface treatments</subject><subject>TITANIUM COMPOUNDS</subject><subject>TITANIUM OXIDES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VAPOR DEPOSITED COATINGS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>YTTRIUM OXIDES</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsXf0EQT8JqPrfN0RarhYIXPYfZbLZN2W7WJBXbX2-kVU8zDM88vLwIXVNyTwkZPUxmhJVSCKVO0IDmpaCEidO8E6kKJZQ8RxcxrkmGGRMDtJxHn1Y2bKDF_svVkJzvsG9wv9pFZ_L1E3ofcG17H12yNe4hJAdtu8MxQeVat8_HvQvGdw7wr2sCITgbsPHZ2C3jJTproI326jiH6H329DZ9KRavz_Pp46IwnLJUjHglS8JJpeq6EVxQbqDkYABUbWUjGmBjaRSoMSVUUaigllyVSjClWAWED9HNwetjcjqaHNmscrTOmqRHtCwz-Q_1wX9sbUx67behy7k0Y4xnoxQZujtAJvgYg210H9wGwk5Ton_K1v9lZ_j2aISYS2sCdMbFvw9B2XgsCP8GHbB-_w</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>SOHN, Y. H</creator><creator>BIEDERMAN, R. R</creator><creator>SISSON, R. D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>19940201</creationdate><title>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</title><author>SOHN, Y. H ; BIEDERMAN, R. R ; SISSON, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</topic><topic>360205 - Ceramics, Cermets, & Refractories- Corrosion & Erosion</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>COATINGS</topic><topic>CORROSION PRODUCTS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL-PHASE TRANSFORMATIONS</topic><topic>DATA</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FAILURES</topic><topic>HEAT TREATMENTS</topic><topic>INFORMATION</topic><topic>MATERIALS SCIENCE</topic><topic>MICROSTRUCTURE</topic><topic>NUMERICAL DATA</topic><topic>OXIDATION</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Surface treatments</topic><topic>TITANIUM COMPOUNDS</topic><topic>TITANIUM OXIDES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VAPOR DEPOSITED COATINGS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>YTTRIUM OXIDES</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SOHN, Y. H</creatorcontrib><creatorcontrib>BIEDERMAN, R. R</creatorcontrib><creatorcontrib>SISSON, R. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SOHN, Y. H</au><au>BIEDERMAN, R. R</au><au>SISSON, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>1994-02-01</date><risdate>1994</risdate><volume>3</volume><issue>1</issue><spage>55</spage><epage>60</epage><pages>55-60</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.% Y[sub 2]O[sub 3]) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1,373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of [alpha]Al[sub 2]O[sub 3] and rutile TiO[sub 2] or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF02654499</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9495 |
ispartof | Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.55-60 |
issn | 1059-9495 1544-1024 |
language | eng |
recordid | cdi_osti_scitechconnect_7166429 |
source | Springer Online Journals Archive Complete |
subjects | 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies 360205 - Ceramics, Cermets, & Refractories- Corrosion & Erosion ALUMINIUM COMPOUNDS ALUMINIUM OXIDES CHALCOGENIDES CHEMICAL REACTIONS COATINGS CORROSION PRODUCTS Cross-disciplinary physics: materials science rheology CRYSTAL-PHASE TRANSFORMATIONS DATA Exact sciences and technology EXPERIMENTAL DATA FAILURES HEAT TREATMENTS INFORMATION MATERIALS SCIENCE MICROSTRUCTURE NUMERICAL DATA OXIDATION OXIDES OXYGEN COMPOUNDS PHASE TRANSFORMATIONS Physics Surface treatments TITANIUM COMPOUNDS TITANIUM OXIDES TRANSITION ELEMENT COMPOUNDS VAPOR DEPOSITED COATINGS YTTRIUM COMPOUNDS YTTRIUM OXIDES ZIRCONIUM COMPOUNDS ZIRCONIUM OXIDES |
title | Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal Barrier coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isothermal%20oxidation%20of%20physical%20vapor%20deposited%20partially%20stabilized%20zirconia%20thermal%20Barrier%20coatings&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=SOHN,%20Y.%20H&rft.date=1994-02-01&rft.volume=3&rft.issue=1&rft.spage=55&rft.epage=60&rft.pages=55-60&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/BF02654499&rft_dat=%3Cproquest_osti_%3E22542289%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-73b56030b9ddf43413ca63acaa9de5f4fa285c9a9810191abad5396942992ba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222353954&rft_id=info:pmid/&rfr_iscdi=true |