Loading…

Electron tunneling properties of outer-membrane decaheme cytochromes from Shewanella oneidensis

We have characterized the outer-membrane decaheme cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 at the single-molecule level using scanning tunneling microscopy (STM) and tunneling spectroscopy (TS). These cytochrome proteins are of great interest because they are thought to mediate bact...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2007-02, Vol.71 (3), p.543-555
Main Authors: Wigginton, Nicholas S., Rosso, Kevin M., Lower, Brian H., Shi, Liang, Hochella, Michael F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have characterized the outer-membrane decaheme cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 at the single-molecule level using scanning tunneling microscopy (STM) and tunneling spectroscopy (TS). These cytochrome proteins are of great interest because they are thought to mediate bacterial electron transfer reactions in anoxic waters that control the reductive dissolution of oxide minerals. In our study, to characterize the electron transfer properties of these proteins on a model surface, the purified cytochromes were chemically immobilized as molecular monolayers on Au(111) substrates via a recombinant tetra-cysteine sequence as verified by X-ray photoelectron spectroscopy. Atomic force microscopy images confirm the monolayer films were ∼5–8 nm thick which is consistent with the apparent lateral dimensions of individual cytochrome molecules obtained with STM. Current–voltage TS of single cytochrome molecules revealed that OmcA and MtrC have different abilities to mediate tunneling current despite having otherwise very similar molecular and biochemical properties. These observations suggest that, based on their electron tunneling properties, the two cytochromes could have specific roles during bacterial metal reduction. Additionally, this study establishes single-molecule STM/TS as an effective means for revealing insights into biogeochemical redox processes in the environment.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2006.10.002