Loading…

Oxidation and volatilization of TZM alloy in air

The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal-base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to los...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2000-12, Vol.283, p.1458-1462
Main Authors: Smolik, G.R., Petti, D.A., Schuetz, S.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal-base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoO 3) species. Transport of radioactivity by the volatilization, migration and re-deposition of MoO 3 during a potential accident involving a loss of vacuum or inert environment represents a safety issue. We have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400°C and 800°C. Calculations using chemical thermodynamic data for vapor pressures over pure MoO 3 and a vaporization mass transfer model correlate well with the experimental data between 600°C and 800°C. Partial saturation of (MoO 3) gas species accounts for influences of flow rate at 700°C. Some anomalies in oxidation rate below 650°C suggest that other phases, e.g., MoO 2 or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.
ISSN:0022-3115
1873-4820
DOI:10.1016/S0022-3115(00)00303-2